导数专题 函数零点个数

导数专题 函数零点个数

$x$ $(-∞,-\sqrt{2})$ $-\sqrt{2}$

$(-\sqrt{2},\sqrt{2})$ $\sqrt{2}$ $(\sqrt{2},+∞)$

$f'(x)$ $+$ $0$ $-$ $0$ $+$

$f(x)$ ↗ 极大值 ↘ 极小值 ↗

\(\therefore f(x)\)的极大值是\(f(-\sqrt{2})=8\sqrt{2}\),极小值是\(f(\sqrt{2})=-8\sqrt{2}\),

且当\(f(-3)=-18<0\),\(f(3)=18>0\),

\(\therefore f(-3)\cdot f(-\sqrt{2})<0\),\(f(3)\cdot f(\sqrt{2})>0\),

\(\therefore f(x)\)在\((-∞,-\sqrt{2})\)、\((-\sqrt{2},\sqrt{2})\)、\((\sqrt{2},∞)\)上各有\(1\)个零点,

故函数\(f(x)\)有三个零点,即方程\(f(x)=0\)解的个数是\(3\).

证明 \(f^{\prime}(x)=\dfrac{1}{x+1}-\cos x\),

当\(x \in\left(\dfrac{\pi}{2}, \pi\right)\)时,\(-\cos x>0\), \(\dfrac{1}{x+1}>0\),

\(\therefore f^{\prime}(x)=\dfrac{1}{x+1}-\cos x>0\),\(\therefore f(x)\)单调递增,

而\(f\left(\dfrac{\pi}{2}\right)=\ln \left(\dfrac{\pi}{2}+1\right)-1<0\),\(f(π)=\ln ⁡(π+1)>0\),

所以\(f(x)\)在\(\left(\dfrac{\pi}{2}, \pi\right)\)上有且仅有一个零点\(x_0\);

当\(x∈[π,+∞)\)时,\(f(x)=\ln ⁡(x+1)-\sin ⁡x>\ln ⁡(π+1)-1>0\),

所以以\(f(x)\)在\([π,+∞)\)上无零点;

综上所述,\(f(x)\)有且仅有一个零点.

【题型2】 分离参数法

【典题1】 若\(f(x)=ae^2x+(a-2)e^x-x\)有两个零点,求\(a\)的取值范围.

解析 依题意, \(f(x)=0 \Leftrightarrow a\left(e^{2 x}+e^x\right)=2 e^x+x \Leftrightarrow a=\dfrac{2 e^x+x}{e^{2 x}+e^x}\),

令\(g(x)=\dfrac{2 e^x+x}{e^{2 x}+e^x}\),

则\(g^{\prime}(x)=\dfrac{\left(2 e^x+1\right)\left(e^{2 x}+e^x\right)-\left(2 e^x+x\right)\left(2 e^{2 x}+e^x\right)}{\left(e^{2 x}+e^x\right)^2}=\dfrac{\left(2 e^x+1\right)\left(1-e^x-x\right)}{e^x\left(e^x+1\right)^2}\),

令\(h(x)=1-e^x-x\),

显然函数\(h(x)\)是\(R\)上的减函数,而\(h(0)=0\),

当\(x<0\)时,\(h(x)>0\),\(g'(x)>0\),当\(x>0\)时,\(h(x)<0\),\(g'(x)<0\),

因此,函数\(g(x)\)在\((-∞,0)\)上单调递增,在\((0,+∞)\)上单调递减,

当\(x=0\)时,\(g(x)_{max}=g(0)=1\),

而\(g(-1)=\dfrac{2-e}{e^{-1}+1}<0\),

又当\(x>0\)时,\(g(x)>0\)恒成立,

函数\(f(x)\)有两个零点,等价于直线\(y=a\)与函数\(y=g(x)\)的图象有两个公共点,

在同一坐标系内作出直线\(y=a\)与函数\(y=g(x)\)的图象,如图,

由图象知,当且仅当\(0

所以\(a\)的取值范围是\((0,1)\).

点拨 利用分离参数法,能把含参函数问题转化为不含参函数问题.

【巩固练习】

1.已知函数\(f(x)=(x-a)\ln ⁡x(a∈R)\),若函数\(f(x)\)存在三个单调区间,则实数\(a\)的取值范围是\(\underline{\quad \quad}\) .

2.讨论函数\(g(x)=\dfrac{1}{x}-\dfrac{m}{x^2}-\dfrac{x}{3}(x>0)\)零点的个数.

3.已知函数\(f(x)=\dfrac{x^2+2 x+4}{x+2}\).

(1)求函数\(f(x)\)在区间\([-1,1]\)上的最值;

(2)若关于\(x\)的方程\((x+2)f(x)-ax=0\)在区间\((0,3)\)内有两个不等实根,求实数\(a\)的取值范围.

参考答案

答案 \(\left(-\dfrac{1}{e^2}, 0\right)\)

解析 \(f^{\prime}(x)=\ln x+\dfrac{1}{x}(x-a)=\ln x+1-\dfrac{a}{x}\),

函数\(f(x)=(x-a)\ln ⁡x(a∈R)\),若函数\(f(x)\)存在三个单调区间,

即\(f'(x)=0\)有两个不等实根,即\(a=x(\ln ⁡x+1)\)有两个不等实根,

转化为\(y=a\)与\(y=x(\ln ⁡x+1)\)的图像有两个不同的交点,

\(y'=\ln ⁡x+2\),令\(\ln ⁡x+2=0\),即\(x=\dfrac{1}{e^2}\) ,

即\(y=x(\ln ⁡x+1)\)在\(\left(0, \dfrac{1}{e^2}\right)\)上单调递减,在\(\left(\dfrac{1}{e^2},+\infty\right)\)上单调递增 ,

\(y_{min}=-\dfrac{1}{e^2}\),

当\(x\in \left(0, \dfrac{1}{e^2}\right)\)时,\(y<0\),

所以\(a\)的范围为\(\left(-\dfrac{1}{e^2}, 0\right)\).

答案 当\(m>\dfrac{2}{3}\)时,函数\(g(x)\)无零点;

当\(m=\dfrac{2}{3}\)或\(m≤0\)时,函数\(g(x)\)有且仅有一个零点;

当\(0

解析 令\(g(x)=0\),得\(m=-\dfrac{1}{3} x^3+x(x>0)\),

设\(h(x)=-\dfrac{1}{3} x^3+x(x>0)\),

所以\(h'(x)=-x^2+1=-(x-1)(x+1)\),

当\(x\in (0,1)\)时,\(h'(x)>0\),此时\(h(x)\)在\((0,1)\)上为增函数;

当\(x\in (1,+∞)\)时,\(h'(x)<0\),此时\(h(x)\)在\((1,+∞)\)上为减函数,

所以当\(x=1\)时,\(h(x)\)取极大值\(h(1)=-1+\dfrac{1}{3}=\dfrac{2}{3}\),

且\(x→0\)时\(h(x)→0\),\(x→+∞\)时\(h(x)→-∞\),

故当\(m>\dfrac{2}{3}\)时,函数\(y=m\)和函数\(y=h(x)\)无交点;

当\(m=\dfrac{2}{3}\)时,函数\(y=m\)和函数\(y=h(x)\)有且仅有一个交点;

当\(0

当\(m≤0\)时,函数\(y=m\)和函数\(y=h(x)\)有且仅有一个交点.

综上所述,当\(m>\dfrac{2}{3}\)时,函数\(g(x)\)无零点;

当\(m=\dfrac{2}{3}\)或\(m≤0\)时,函数\(g(x)\)有且仅有一个零点,

当\(0

答案 (1)最大值为\(3\),最小值为\(2\);(2) \(\left(6, \dfrac{19}{3}\right)\).

解析 (1)最大值为\(3\),最小值为\(2\)(过程略).

(2)因为关于于\(x\)的方程\((x+2)f(x)-ax=0\)在区间\((0,3)\)内有两个不等实根,

则\((x+2) \cdot \dfrac{x^2+2 x+4}{x+2}-a x=0\)在区间\((0,3)\)内有两个不等实根,

所以\(x^2+2x+4-ax=0\)在区间\((0,3\))内有两个不等实根,

所以\(a=\dfrac{x^2+2 x+4}{x}\)在区间\((0,3)\)内有两个不等实根,

令\(g(x)=\dfrac{x^2+2 x+4}{x}\),\(x\in (0,3)\),

\(g(x)=x+2+\dfrac{4}{x} \geqslant 2 \sqrt{x \cdot \dfrac{4}{x}}+2=6\) (当且仅当\(x=2\)时,取等号),

\(x→0\)时,\(g(x)→+∞\); \(g(3)=\dfrac{3^2+2 \times 3+4}{3}=\dfrac{19}{3}\),

所以\(a\)的取值范围为 \(\left(6, \dfrac{19}{3}\right)\).

【题型3】直接法

【典题1】 讨论函数\(f(x)=x\ln x-\dfrac{1}{2} x^2+(a-1)x(a\in R)\)的极值点的个数.

解析 \(f(x)\)的定义域是\((0 ,+∞)\),\(f'(x)=\ln x-x+a\),

令\(g(x)=\ln x-x+a\),则\(f'(x)=\ln x-x+a\),(构造函数,二次求导)

当\(x\in (0 ,1)\)时,\(g^{\prime}(x)>0\),\(g(x)\)单调递增,即\(f'(x)\)单调递增;

当\(x\in (1 ,+∞)\)时,\(g'(x)<0\), \(g(x)\)单调递减,即\(f'(x)\)单调递减;

所以当\(x=1\)时,\(f'(x)\)有极大值\(f'(1)=a-1\),也是最大值,

(确定\(f'(x)\)的最大值\(a-1\),想下函数图象\(a-1\)与\(0\)的大小比较决定导函数\(y=f'(x)\)是否存在零点)

① 当\(a-1≤0\),即\(a≤1\)时,

所以\(f(x)\)在\((0 ,+∞)\)上单调递减,此时\(f(x)\)无极值,

② 当\(a>1\)时,\(f'(1)=a-1>0\),

\(f^{\prime}\left[\left(\dfrac{1}{e}\right)^{a+1}\right]=\ln \left(\dfrac{1}{e}\right)^{a+1}-\left(\dfrac{1}{e}\right)^{a+1}+a\)\(=-a-1-\left(\dfrac{1}{e}\right)^{a+1}+a=-1-\left(\dfrac{1}{e}\right)^{a+1}<0\),

易证\(x>1\)时,\(e^x>2x\),

所以\(a>1\),\(f'(e^a )=2a-e^a<0\),

故存在\(x_1\) ,\(x_2\)满足\(0<\left(\dfrac{1}{e}\right)^{a+1}

当\(x\in (0 ,x_1)\)时,\(f(x)\)单调递减,

当\(x\in (x_1 ,x_2)\)时,\(f(x)\)单调递增,

当\(x\in (x_2 ,+∞)\)时,\(f(x)\)单调递减,

所以\(f(x)\)在\(x=x_1\)处有极小值,在\(x=x_2\)处有极大值.

综上所述,当\(a≤1\)时,\(f(x)\)没有极值点;当\(a>1\)时,\(f(x)\)有\(2\)个极值点.

点拨

① 求出导函数\(f'(x)=\ln x-x+a\),它的图象很难确定,不知道是否存在零点(这与原函数单调性有关),则考虑二次求导进行分析;

② 当\(a>1\)时,导函数\(f'(x)=\ln x-x+a\)存在零点\(x_1\) ,\(x_2\)是怎么确定的?

误区1:\(y=f'(x)\)最大值在\(x\)轴上方且是“先增后减”,想当然说它有两个零点是不严谨的.因为\(y=f'(x)\)的图象可能如下左图,则只有一个零点;如右图,甚至没有零点;

误区2:当\(x→0\)时,显然\(f'(x)→-∞\),当\(x→+∞\)时,显然\(f'(x)→-∞\),

那可知\(y=f'(x)\)存在两个零点,也不够严谨;

而因\(f^{\prime}\left[\left(\dfrac{1}{e}\right)^{a+1}\right]<0\), \(f'(e^a)=2a-e^a<0\),

由零点判定定理可确定\(y=f'(x)\)有两个零点\(x_1\)、\(x_2\).

③ 那“取点”\(\left(\dfrac{1}{e}\right)^{a+1}\)、\(e^a\)是怎么想到的呢?这需要些技巧,导函数\(f'(x)=\ln x-x+a\)中有参数\(a>1\),\(x\)取常数是不行的;因有\(\ln x\),想到含\(a\)的\(e\)指数幂,多尝试就可以!

【典题2】已知函数\(f(x)=\dfrac{1}{x}+a\ln ⁡x-a-1\),\(a\in R\).

(1)讨论函数\(f(x)\)的单调性;(2)讨论函数\(f(x)\)的零点个数.

解析 (1) \(f^{\prime}(x)=-\dfrac{1}{x^2}+\dfrac{a}{x}=\dfrac{a x-1}{x^2}\),

当\(a≤0\)时,\(f'(x)<0\),故\(f(x)\)在\((0,+∞)\)上单调递减,

当\(a>0\)时, \(f^{\prime}(x)>0 \Rightarrow x>\dfrac{1}{a}\),

\(f(x)\)在\(\left(0, \dfrac{1}{a}\right)\)上单调递减,在\(\left(\dfrac{1}{a},+\infty\right)\)上单调递增.

(2)当\(a≤0\)时, \(f\left(\dfrac{1}{e}\right)=e-2 a-1 \geq e-1>0\),\(f(e)=\dfrac{1}{e}-1<0\),\(f(x)\)有唯一零点;

当\(a>0\)时,\(f(1)=-a<0\),

(不用最小值\(f\left(\dfrac{1}{a}\right)=-a\ln a-1<0\),因为这个还要证明,用\(f(1)=-a<0\)容易,接着要在\(x=1\)两边各取点\(01\)使得\(f(x_1 )>0\),\(f(x_2 )>0\), )

而\(e^{1+\frac{1}{a}}>1,\), \(f\left(e^{1+\frac{1}{a}}\right)=\dfrac{1}{e^{1+\frac{1}{a}}}+a\left(1+\dfrac{1}{a}\right)-a-1=\dfrac{1}{e^{1+\frac{1}{a}}}>0\),(取 \(x_2=e^{1+\frac{1}{a}}\))

\(\therefore f(x)\)在 \(\left(1, e^{1+\frac{1}{a}}\right)\)内有一个零点;

\(f\left(e^{-a-1}\right)=e^{a+1}-(a+1)^2\),(取 \(x_1=e^{-a-1}<1\))

令\(g(t)=e^t-t^2\),则\(g'(t)=e^t-2t\),\(g'' (t)=e^t-2\),

当\(t>1\)时,\(g'' (t)>e-2>0\),\(\therefore g'(t)\)单调递增,

\(\therefore g'(t)>g'(1)=e-2>0\),\(\therefore g(t)\)单调递增,

\(\therefore g(t)>g(1)=e-1>0\),故 \(f\left(e^{-a-1}\right)>0\),

\(\because e^{-a-1}<1\),\(\therefore f(x)\)在\((e^{-a-1},1)\)内有一个零点;

\(\therefore\)当\(a>0\)时\(f(x)\)有两个零点.

综上,当\(a≤0\)时\(f(x)\)有一个零点,当\(a>0\)时\(f(x)\)有两个零点.

【巩固练习】

1.若函数\(f(x)=-\dfrac{1}{3} x^3+a x^2+3 a^2 x-\dfrac{5}{3}\)仅有一个零点,求实数\(a\)的取值范围.

2.讨论函数\(f(x)=2 e^{2 x}-\dfrac{a}{x}\),\(x\in (0,1)\)的零点的个数.

3.已知函数\(f(x)=ax⋅\ln ⁡x\)(其中\(a≠0\),\(a\in R\)), \(g(x)=\dfrac{x-1}{x+1}\).

(1)若存在实数\(a\)使得\(f(x)<\dfrac{1}{e}\)恒成立,求\(a\)的取值范围;

(2)当\(a⩽\dfrac{1}{2}\)时,讨论函数\(y=f(x)-g(x)\)的零点个数.

参考答案

答案 \(\left(-1, \dfrac{\sqrt[3]{5}}{3}\right)\)

解析 函数\(f(x)\)只有一个零点,

因为\(f'(x)=-x^2+2ax+3a^2=-(x-3a)(x+a)\),

①当\(a<0\)时,由\(f'(x)>0\),解得\(3a

所以函数\(f(x)\)在区间\((3a,-a)\)上单调递增,

由\(f'(x)<0\),解得\(x<3a\)或\(x>-a\),

所以函数\(f(x)\)在区间\((-∞,3a)\),\((-a,+∞)\)上单调递减,

又\(f(0)=-\dfrac{5}{3}<0\),

所以只需要\(f(-a)<0\),解得\(-1

所以实数\(a\)的取值范围为\((-1,0)\).

②当\(a=0\)时,显然\(f(x)\)只有一个零点成立,

③当\(a>0\)时,由\(f'(x)>0\),解得\(-a

即\(f(x)\)在区间\((-a,3a)\)上单调递增,

由\(f'(x)<0\),解得\(x<-a\)或\(x>3a\),

即函数\(f(x)\)在区间\((-∞,-a)\),\((3a,+∞)\)上单调递减,

又\(f(0)=-\dfrac{5}{3}<0\),

所以只需\(f(3a)<0\),解得 \(0

综上,实数\(a\)的取值范围为\(\left(-1, \dfrac{\sqrt[3]{5}}{3}\right)\).

答案 当\(a≤0\)或\(a≥2e^2\)时,\(f(x)\)无零点;当\(0

解析 \(f^{\prime}(x)=4 e^{2 x}+\dfrac{a}{x^2}\)

①当\(a≤0\)时,\(f(x)>0\)恒成立,在\((0,1)\)上恒成立,\(\therefore f(x)\)在\((0,1)\)上无零点;

②当\(a≥2e^2\)时, \(\because f^{\prime}(x)=4 e^{2 x}+\dfrac{a}{x^2}>0\),在\((0,1)\)上恒成立,

\(\therefore f(x)\)在\((0,1)\)上单调递增,

\(\therefore f(x)

③当\(00\)在\((0,1)\)上恒成立,

\(\therefore f(x)\)在\((0,1)\)上单调递增.

又\(\because\)当\(x\)趋向于\(0\)时,\(f(x)\)趋向于\(-∞\);且\(f(1)=2e^2-a>0\).

故由零点存在性定理可知:\(f(x)\)在\((0,1)\)上存在唯一一个零点,

综上:当\(a≤0\)或\(a≥2e^2\)时,\(f(x)\)在\((0,1)\)上无零点;

当\(0

答案 (1)\((-1,0)\);

(2) 当\(a<0\)或\(a=\dfrac{1}{2}\)时,\(h(x)\)有\(1\)个零点,当\(0

解析 (1)因为\(f(x)=ax\ln ⁡x\),\(a≠0\),要使得\(f(x)<\dfrac{1}{e}\)在\((0,+∞)\)上恒成立,

所以\(a<0\),由\(f'(x)=a(\ln ⁡x+1)\),

由\(f'(x)=a(\ln ⁡x+1)>0\),解得\(0

由\(f'(x)=a(\ln ⁡x+1)<0\),解得\(x>\dfrac{1}{e}\) ,

所以\(f(x)_{\max }=f\left(\dfrac{1}{e}\right)=-\dfrac{a}{e}\),

所以\(-\dfrac{a}{e}<\dfrac{1}{e}\),所以\(-1

所以\(a\)的取值范围为\((-1,0)\).

(2)①当\(a<0\)时,当\(x\in (0,1)\)时,\(f(x)>0\),\(g(x)<0\),

所以\(y=f(x)-g(x)\)恒大于零,

当\(x=1\)时,\(y=f(x)-g(x)=0\),

令\(h(x)=f(x)-g(x)\),

所以\(a<0\)时,令\(h(x)\)在\((0,+∞)\)只有\(1\)个零点,

②当\(a>0\)时,令\(h(x)=f(x)-g(x)\),

则\(h(x)=a x \ln x-1+\dfrac{2}{x+1}(x>0)\),

\(h^{\prime}(x)=a(\ln x+1)-\dfrac{2}{(x+1)^2}\), \(h^{\prime \prime}(x)=\dfrac{a}{x}+\dfrac{4}{(x+1)^3}\),

因为\(x>0\),所以\(h'' (x)>0\)恒成立,

所以\(h'(x)\)在\((0,+∞)\)上单调递增,

因为\(h(1)=0\),当\(h'(1)=0\),即\(a=\dfrac{1}{2}\)时,

\(h'(x)\)在\((0,1)\)上恒小于零,在\((1,+∞)\)上恒大于零,

即 在\((0,1)\)上单调递减,在\((1,+∞)\)上单调递增,

所以\(h(x)⩾h(1)=0\),\(y=h(x)\)在\((0,+∞)\)只有\(1\)个零点,

若\(0

由于\(h'(x)\)在\((0,+∞)\)上单调递增,

所以\(h'(x)\)在\((0,1]\)上恒小于零,\(h(x)\)在\((0,1]\)上单调递减,

因为\(h(1)=0\),所以\(h(x)\)在\((0,1]\)上有唯一零点\(1\),

又因为\(h'(1)=a-\dfrac{1}{2}<0\), \(h^{\prime}\left(e^{\frac{2}{a}-1}\right)=2-\dfrac{2}{\left(e^{\frac{2}{a}-1}+1\right)^2}>0\),

所以存在 \(x_0 \in\left(1, e^{\frac{2}{a}-1}\right)\),使得\(h'(x_0 )=0\),

由于\(h'(x)\)在\((0,+∞)\)上单调递增, (1) ,

所以\(h(x)\)在\((1,x_0 )\)上单调递减,在\((x_0,+∞)\)上单调递增, \(x_0 \in\left(1, e^{\frac{2}{a}-1}\right)\),

所以\(h(x_0 )

又\(01\), \(h\left(e^{\frac{1}{a}}\right)=e^{\frac{1}{a}}-1+\dfrac{2}{e^{\frac{1}{a}+1}}>0\),

所以 \(x_0

结合\(h(x)\)在\((x_0,+∞)\)单调递增,\(h(x)\)在\((1,+∞)\)上有唯一零点,

又\(h(1)=0\),

所以\(0

又因为\(h(1)=0\),

所以\(0

综上所述,当\(a<0\)或\(a=\dfrac{1}{2}\)时,\(h(x)\)在\((0,+∞)\)只有\(1\)个零点,

当\(0

【题型4】几何法

【典题1】 函数\(g(x)=(x^2+1) e^x-mx-1\)在\([-1,+∞)\)有两个零点,求\(m\)的取值范围.

解析 函数\(g(x)=(x^2+1) e^x-mx-1\)在\([-1,+∞)\)有两个零点,

等价于\(s(x)=(x^2+1) e^x\)与\(t(x)=mx+1\)在\([-1,+∞)\)有两个交点,

\(\because s'(x)=(x+1)^2 e^x≥0\),\(\therefore s(x)\)在\([-1,+∞)\)单调递增,

又 \(s(-1)=\dfrac{2}{e}\),\(s(0)=1\),

而函数\(t(x)=mx+1\)是过定点\((0,1)\)的直线,且斜率为\(m\),

则 \(\dfrac{1-\dfrac{2}{e}}{0-(-1)}=1-\dfrac{2}{e} \leq m<1\),或\(m>s'(0)=1\),

故m的取值范围为 \(1-\dfrac{2}{e} \leqslant m<1\)或\(m>1\).

点拨 函数能够转化为一次函数与其他形式函数的交点问题,可考虑这种方法;但还要注意到\(s(x)=(x^2+1) e^x\)是凹函数,因为\(s'' (x)>0\),若\(s(x)\)是凸函数,则\(m\)的范围就不一样了,但内容超纲不适合处理解答题,第二问利用分离参数法有难度 \(m=\dfrac{\left(x^2+1\right) e^x-1}{x}\),出现洛必达法则、隐零点.

【巩固练习】

1.函数 \(F(x)=\dfrac{a x-a}{e^x}+1(a<0)\)没有零点,求实数\(a\)的取值范围.

参考答案

答案 \((-e^2,0)\)

解析 由已知有 \(F(x)=\dfrac{a x-a+e^x}{e^x}=0\)没有解,即\(e^x=-a(x-1)\)无解,

\(\therefore y_1=e^x\)与\(y_2=-a(x-1)\)两图象无交点,

设两图象相切于\((m,n)\)两点,

\(\therefore\left\{\begin{array}{l}

e^m=-a(m-1) \\

e^m=-a

\end{array}\right.\),\(\therefore m=2\),\(a=-e^2\),

\(\because\)两图象无交点,\(\therefore\)故\(a\)的取值范围是\((-e^2,0)\).

分层练习

【A组---基础题】

1.已知函数\(f(x)=ax^3+bx^2+cx\)在点\(x_0\)处取得极小值\(-4\),使其导数\(f'(x)>0\)的\(x\)的取值范围为\((1,3)\),

(1)求\(f(x)\)的解析式;

(2)若过点\(P(-1,m)\)作曲线\(y=f(x)\)的三条切线,求实数\(m\)的取值范围.

2.证明:\(a>1\), \(f(x)=(1+x^2 ) e^x-a\)在 \((-∞,+∞)\)上有且仅有一个零点.

3.已知函数 \(f(x)=\dfrac{1}{3} x^3-\dfrac{(k+1)}{2} x^2\),\(g(x)=\dfrac{1}{3}-kx\),且\(f(x)\)在区间\((2,+∞)\)上为增函数.

(1)求实数\(k\)的取值范围;

(2)若函数\(f(x)\)与\(g(x)\)的图象有三个不同的交点,求实数\(k\)的取值范围.

4.已知函数\(f(x)=ax^2+x-\ln ⁡x(a\in R)\).

(1)当\(a=1\)时,求\(f(x)\)在区间 \(\left[\dfrac{1}{3}, 1\right]\)上的最值;

(2)若\(g(x)=f(x)-x\)在定义域内有两个零点,求\(a\)的取值范围.

5.若 \(f(x)=e^{x-2}-a x\)有两个零点,求实数\(a\)的取值范围.

6.已知函数\(f(x)=x^2-a\ln ⁡x\),

(1)求\(f(x)\)的单调区间;

(2)如果\(a>0\),讨论函数\(y=f(x)\)在区间\((1,e)\)上零点的个数.

7.已知函数\(f(x)=x^3+ax+\dfrac{1}{4}\),\(g(x)=-\ln ⁡x\).用\(\min \{m,n\}\)表示\(m\),\(n\)中的最小值,设函数 \(h(x)=\min \{f(x), g(x)\}(x>0)\),讨论\(h(x)\)零点的个数 .

8.若\(f(x) =m^2 x^2-\ln ⁡x\)的图象与直线\(y=mx\)交于\(M(x_M,y_M )\),\(N(x_N,y_N )\),两点,且\(x_M>x_N>1\),求实数\(m\)的取值范围.

9.已知\(g(x)=a^x+b^x-2(01)\)有且只有\(1\)个零点,求\(ab\)的值.

10.已知\(a>0\),函数\(f(x)=ae^x-x-2\),函数\(g(x)=\ln ⁡(x+2)-x-\ln ⁡a\).

(1)若对\(∀x\in R\),\(f(x)⩾0\)恒成立,求\(a\)的取值范围;

(2)若方程\(f(x)=g(x)\)有两个根,求\(a\)的取值范围.

参考答案

答案 (1)\(f(x)=-x^3+6x^2-9x\);(2) \((-11,16)\) .

解析 (1)\(f(x)=-x^3+6x^2-9x\)(过程略).

(2)设切点\((t,f(t))\),\(y-f(t)=f'(t)(x-t)\)

\(y=(-3t^2+12t-9)(x-t)+(-t^3+6t^2-9t)\)

\(=(-3t^2+12t-9)x+t(3t^2-12t+9)-t(t^2-6t+9)\)

\(=(-3t^2+12t-9)x+t(2t^2-6t)\)过\((-1,m)\)

\(\therefore m=(-3t^2+12t-9)(-1)+2t^3-6t^2\),

\(\therefore 2t^3-3t^2-12t+9-m=0\),

设\(g(t)=2t^3-3t^2-12t+9-m\),

令\(g'(t)=6t^2-6t-12=6(t^2-t-2)=0\),

求得\(t=-1\),\(t=2\),

若要方程\(g(t)=0\)有三个根,

需\(\left\{\begin{array} { l }

{ g ( - 1 ) > 0 } \\

{ g ( 2 ) < 0 }

\end{array} \Rightarrow \left\{\begin{array} { l }

{ - 2 - 3 + 1 2 + 9 - m > 0 } \\

{ 1 6 - 1 2 - 2 4 + 9 - m < 0 }

\end{array} \Rightarrow \left\{\begin{array}{l}

m<16 \\

m>-11

\end{array}\right.\right.\right.\)

故\(-11

证明 \(f'(x)=e^x (x^2+2x+1)=e^x (x+1)^2\),\(\therefore f'(x)≥0\),

\(\therefore f(x)=(1+x^2 ) e^x-a\)在\((-∞,+∞)\)上为增函数.

而\(f(0)=1-a<0\), \(f(\sqrt{a})=(1+a) e^{\sqrt{a}}-a=e^{\sqrt{a}}+a\left(e^{\sqrt{a}}-1\right)>0\),

\(\therefore f(x)\)在\((-∞,+∞)\)上有且只有一个零点.

答案 (1) \(k≤1\);(2) \(k<1-\sqrt{3}\).

解析 (1)\(k≤1\)(过程略).

(2)欲使\(f(x)\)与\(g(x)\)的图象有三个不同的交点,

即函数\(h(x)=f(x)-g(x)\)有三个不同的零点,

设 \(h(x)=f(x)-g(x)=\dfrac{x^3}{3}-\dfrac{(k+1)}{2} x^2+k x-\dfrac{1}{3}\),

\(h'(x)=x^2-(k+1)x+k=(x-k)(x-1)\),

令\(h'(x)=0\)得\(x=k\)或\(x=1\),

由(1)知\(k≤1\),

①当\(k=1\)时,\(h'(x)=(x-1)^2≥0\),\(h(x)\)在\(R\)上递增,显然不合题意.

②当\(k<1\)时,\(h(x)\),\(h'(x)\)随\(x\)的变化情况如下表:

$x$ $(-∞,k)$ $k$

$(k,1)$ $1$ $(1,+∞)$

$h'(x)$ $+$ $0$

$-$ $0$ $+$

$h(x)$ $↗$ 极大值 $-\dfrac{k^3}{6}+\dfrac{k^2}{2}-\dfrac{1}{3}$ $↘$ 极小值 $\dfrac{k-1}{2}$ $↗$

由于 \(h(1)=\dfrac{k-1}{2}<0\)且当\(x→+∞\)时,\(y→+∞\),当\(x→-∞\)时\(,y→-∞\),

若要函数\(h(x)=f(x)-g(x)\)有三个不同的零点,

故需 \(-\dfrac{k^3}{6}+\dfrac{k^2}{2}-\dfrac{1}{3}>0\),即\((k-1)(k^2-2k-2)<0\),

\(\therefore\left\{\begin{array}{l}

k<1 \\

k^2-2 k-2>0

\end{array}\right.\),解得 \(k<1-\sqrt{3}\),

综上,所求\(k\)的取值范围为\(k<1-\sqrt{3}\).

答案 (1)\(f(x)_{min}=\ln ⁡2+\dfrac{3}{4}\),\(f(x)_{max}=2\);(2) \(\left(0, \dfrac{1}{2 e}\right)\).

解析 (1) \(f(x)_{min}=\ln ⁡2+\dfrac{3}{4}\),\(f(x)_{max}=2\)(过程略)

(2)令\(g(x)=f(x)-x=0\),得 \(a=\dfrac{\ln x}{x^2}\),

设 \(h(x)=\dfrac{\ln x}{x^2}(x>0)\),

\(\because g(x)=f(x)-x\)在定义域内有两个零点,

\(\therefore\)函数\(y=h(x)\)与\(y=a\)与在定义域内有两个交点

\(\because h^{\prime}(x)=\dfrac{1-2 \ln x}{x^3}\) ,

令\(h'(x)>0\)得:\(0\sqrt{e}\),

\(\therefore h(x)\)在\((0,\sqrt{e})\)单调递增,在\((\sqrt{e},+∞)\)单调递减,

又\(\because h(\sqrt{e})=\dfrac{1}{2e}\),且当\(x→0\)时,\(h(x)→-∞\),当\(x→+∞\)时,\(h(x)→0\),

画出函数\(h(x)\)的大致图像,如图所示:

由图象可得, \(a \in\left(0, \dfrac{1}{2 e}\right)\),

\(\therefore a\)的取值范围为 \(\left(0, \dfrac{1}{2 e}\right)\).

答案 \(\left(\dfrac{1}{e},+\infty\right)\).

解析 方法1

因为\(f(x)=e^{x-2}-ax\),所以 \(f^{\prime}(x)=e^{x-2}-a\),

当\(a⩽0\)时,\(f'(x)>0\),\(f(x)\)在\(R\)上单调递增,

故\(f(x)\)至多存在一个零点,不合题意;

当\(a>0\)时,由\(f'(x)=e^{x-2}-a=0\)得:\(x=2+\ln ⁡a\),

当\(x\in (-∞,2+\ln ⁡a)\)时,\(f'(x)<0\),\(f(x)\)在\((-∞,2+\ln ⁡a)\)上单调递减;

当\(x\in (2+\ln ⁡a,+∞)\)时,\(f'(x)>0\),\(f(x)\)在\((2+\ln ⁡a,+∞)\)上单调递增;

所以当\(x=2+\ln ⁡a\)时,\(f(x)\)取到最小值,且最小值为\(f(2+\ln ⁡a)=-a(1+\ln ⁡a)\).

①当\(0

②当\(a>\dfrac{1}{e}\)时,\(f(2+\ln ⁡a)<0\).

由于 \(f(0)=e^{-2}>0\),

所以\(f(x)\)在\((-∞,2+\ln ⁡a)\)上存在唯一零点.

\(f(4+2 \ln a)=e^{2 \ln a+2}-a(4+2 \ln a)=e^2 a^2-a(4+2 \ln a)=a\left(e^2 a-2 \ln a-4\right)\).

设\(g(a)=e^2 a-2\ln ⁡a-4\),

则 \(g^{\prime}(a)=e^2-\dfrac{2}{e}=\dfrac{e^2 a-2}{a}=\dfrac{e^2}{a}\left(a-\dfrac{2}{e^2}\right)\),

当\(a>\dfrac{1}{e}\)时,\(g'(a)>0\),

所以\(g(a)\)在\(\left(\dfrac{1}{e},+\infty\right)\)上单调递增.

因为\(g\left(\dfrac{1}{e}\right)=e+2-4>0\),

所以\(g(a)>g\left(\dfrac{1}{e}\right)>0\),即\(f(4+2\ln ⁡a)>0\).

从而\(f(x)\)在\(R\)上有两个零点.

综上所述,\(a\)的取值范围为\(\left(\dfrac{1}{e},+\infty\right)\).

方法2 几何法

函数\(f(x)=e^{x-2}-ax\)有两个零点等价于函数\(g(x)=e^{x-2}\)与函数\(y=ax\)有两个交点,

设函数\(y=kx\)与函数\(g(x)=e^{x-2}\)相切,切点\(P(x_0,y_0)\),

\(\because g'(x)=e^{x-2}\),\(\therefore k=g'(x_0 )=e^{x_0-2}\),

即切线方程为\(y=e^{x_0-2} x\),则\(y_0=e^{x_0-2} x_0\),

又\(g(x_0 )=e^{x_0-2}\),即\(y_0=e^{x_0-2}\),\(\therefore x_0=1\),

\(\therefore k=e^{x_0-2}=\dfrac{1}{e}\),

\(\therefore\)若函数\(g(x)=e^{x-2}\)与函数\(y=ax\)有两个交点,则\(a>\dfrac{1}{e}\),

所以\(a\)的取值范围为 \(\left(\dfrac{1}{e},+\infty\right)\).

答案 (1)当\(a≤0\),\(f(x)\)在\((0,+∞)\)上递增;

当\(a>0\),\(f(x)\)的增区间为\(\left(\sqrt{\dfrac{a}{2}},+\infty\right)\),减区间为\(\left(0, \sqrt{\dfrac{a}{2}}\right)\);

(2)当\(0

当\(a=2e\)或\(a≥e^2\)时,函数\(f(x)\)有\(1\)零点;

当\(2e

解析(1)函数\(f(x)=x^2-a\ln ⁡x\)的导数 \(f^{\prime}(x)=2 x-\dfrac{a}{x}=\dfrac{2 x^2-a}{x}(x>0)\),

若\(a≤0\),则\(f'(x)>0\),即有\(f(x)\)在\((0,+∞)\)上递增;

若\(a>0\),由\(f'(x)>0\)得到\(x>\sqrt{\dfrac{a}{2}}\),由\(f'(x)<0\)得到\(0

即有\(a>0\)时,\(f(x)\)的增区间为\(\left(\sqrt{\dfrac{a}{2}},+\infty\right)\),减区间为\(\left(0, \sqrt{\dfrac{a}{2}}\right)\);

(2)由(1)知\(f(x)\)的极小值为 \(f\left(\sqrt{\dfrac{a}{2}}\right)=\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)\),也为最小值.

① 当\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)>0\),即\(0

则\(y=f(x)\)在区间\((1,e)\)上无零点;

② 当\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)=0\),即\(a=2e\),即有\(1<\sqrt{\dfrac{a}{2}}

而\(f(1)=1>0\), \(f\left(\sqrt{\dfrac{a}{2}}\right)=0\),\(f(e)>0\),

则\(f(x)\)在\((1,e)\)上有一个零点;

③ 当\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)<0\),即\(a>2e\),即有\(\sqrt{\dfrac{a}{2}}>\sqrt{e}>1\),

(i)若\(\sqrt{\dfrac{a}{2}}

当\(2e

当\(e^2≤a<2e^2\)时,\(f(e)≤0\),则\(f(x)\)在\((1,e)\)上有\(1\)个零点;

(ii)若\(\sqrt{\dfrac{a}{2}}≥e\),即\(a≥2e^2\),而\(f(1)>0\),\(f(e)<0\),

则\(f(x)\)在\((1,e)\)上有\(1\)零点.

综上所述:当\(0

当\(a=2e\)或\(a≥e^2\)时,函数\(f(x)\)有\(1\)零点;

当\(2e

答案 当\(a>-\dfrac{3}{4}\),\(h(x)\)有\(0\)个零点,

当 \(a=-\dfrac{3}{4}\)或\(a≤-\dfrac{5}{4}\)时,\(h(x)\)有一个零点,

当\(-\dfrac{5}{4}

解析 当 \(x\in (1,+∞)\)时,\(g(x)=-\ln ⁡x<0\),

\(\therefore\) 函数 \(h(x)=\min \{f(x), g(x)\} \leq g(x)<0\),

故\(h(x)\)在\((1,+∞)\)时无零点.

当\(x=1\)时,若\(a≥-\dfrac{5}{4}\),则\(f(1)=a+\dfrac{5}{4}≥0\),

\(\therefore h(x)=\min \{f(1), g(1)\}=g(1)=0\),

故\(x=1\)是函数\(h(x)\)的一个零点;

若\(a<-\dfrac{5}{4}\),则\(f(1)=a+\dfrac{5}{4}<0\),

\(\therefore h(x)=\min \{f(1), g(1)\}=f(1)<0\),

故\(x=1\)不是函数\(h(x)\)的零点;

当 \(x\in (0,1)\)时,\(g(x)=-\ln ⁡x>0\),

所以只需考虑\(f(x)\)在\((0,1)\)的零点个数,

(i)若\(a≤-3\)或\(a≥0\),则\(f'(x)=3x^2+a\),

当\(a≥0\)时,\(f(x)\)在\((0,1)\)无零点,

当\(a≤-3\)时,\(f(x)\)在\((0,1)\)单调,

而\(f(0)=\dfrac{1}{4}\),\(f(1)=a+\dfrac{5}{4}\),\(f(x)\)在\((0,1)\)有一个零点,

(ii)若\(-3

则\(f(x)\)在\(\left(0, \sqrt{-\dfrac{a}{3}}\right)\)单调递减,在\(\left(\sqrt{-\dfrac{a}{3}}, 1\right)\)单调递增,

故当 \(x=\sqrt{-\dfrac{a}{3}}\)时,\(f(x)\)取得最小值,最小值为 \(f\left(\sqrt{-\dfrac{a}{3}}\right)=\dfrac{2 a}{3} \sqrt{-\dfrac{a}{3}}+\dfrac{1}{4}\),

①若\(f\left(\sqrt{-\dfrac{a}{3}}\right)>0\),即\(-\dfrac{3}{4}

②若\(f\left(\sqrt{-\dfrac{a}{3}}\right)=0\),即\(a=-\dfrac{3}{4}\),则\(f(x)\)在\((0,1)\)有唯一零点,

③若\(f\left(\sqrt{-\dfrac{a}{3}}\right)<0\),即\(-3

所以当\(-\dfrac{5}{4}

当\(-3

综上所述,当\(a>-\dfrac{3}{4}\),\(h(x)\)有\(0\)个零点,

当 \(a=-\dfrac{3}{4}\)或\(a≤-\dfrac{5}{4}\)时,\(h(x)\)有一个零点,

当\(-\dfrac{5}{4}

答案 \(\left(-\dfrac{1}{2 e^{\frac{3}{4}}}, 0\right)\)

解析 令 \(m^2 x^2-\ln ⁡x=mx\) ,

则由题意可知\(m^2 x^2-\ln ⁡x-mx=0\)有两个大于\(1\)的实数根,显然\(m≠0\).

令\(F(x)=m^2 x^2-\ln ⁡x-mx\),

则 \(F^{\prime}(x)=2 m^2 x-\dfrac{1}{x}-m=\dfrac{(2 m x+1)(m x-1)}{x}\).

若\(m>0\),则当 \(x \in\left(0, \dfrac{1}{m}\right)\)时,\(F'(x)<0\),

当 \(x \in\left(-\dfrac{1}{2 m}, \quad+\infty\right)\)时,\(F'(x)>0\),

要满足已知条件,必有 \(\left\{\begin{array}{c}

F(1)=m^2-m>0 \\

F\left(\dfrac{1}{m}\right)=-\ln \dfrac{1}{m}<0 \\

\dfrac{1}{m}>1

\end{array}\right.\)此时无解;

若\(m<0\),则当 \(x \in\left(0,-\dfrac{1}{2 m}\right)\)时,\(F'(x)<0\),

当 \(x \in\left(-\dfrac{1}{2 m},+\infty\right)\)时,\(F'(x)>0\),

要满足已知条件,必有\(\left\{\begin{array}{c}

F(1)=m^2-m>0, \\

F\left(-\dfrac{1}{2 m}\right)=\dfrac{3}{4}+\ln (-2 m)<0 \\

-\dfrac{1}{2 m}>1

\end{array}\right.\),解得\(-\dfrac{1}{2 e^{\dfrac{3}{4}}}

当\(-\dfrac{1}{2 e^{\dfrac{3}{4}}}

故函数\(F(x)\)在\(\left(1,-\dfrac{1}{2 m}\right)\)上有一个零点.

易知 \(\dfrac{1}{m^2}>-\dfrac{1}{2 m}\),且 \(F\left(\dfrac{1}{m^2}\right)=\dfrac{1}{m^2}-\dfrac{1}{m}-\ln \dfrac{1}{m^2}>\dfrac{1}{m^2}-\ln \dfrac{1}{m^2}\) ,

下证:\(x-\ln ⁡x>0\).

令\(g(x)=x-\ln ⁡x\),则\(g'(x)=1-\dfrac{1}{x}\),当\(0

当\(x>1\)时,\(g'(x)>0\),

故\(g(x)≥g(1)=1-\ln ⁡1>0\),即\(x-\ln ⁡x>0\),

故\(F\left(\dfrac{1}{m^2}\right)>\dfrac{1}{m^2}-\ln \dfrac{1}{m^2}>0\),

故\(F\left(-\dfrac{1}{2 m}\right) \cdot F\left(\dfrac{1}{m^2}\right)<0\),

又\(F(x)\)在 \(\left(-\dfrac{1}{2 m},+\infty\right)\)上单调递增,

故\(F(x)\)在 \(\left(-\dfrac{1}{2 m},+\infty\right)\)上有一个零点.

综上所述,实数\(m\)的取值范围为 \(\left(-\dfrac{1}{2 e^{\frac{3}{4}}}, 0\right)\).

答案 \(1\)

解析 \(\because g(0)=0\),由题意知\(0\)为\(g(x)=f(x)-2\)的唯一零点,

因为\(g'(x)=a^x \ln ⁡a+b^x \ln ⁡b\),且\(01\),

故\(\ln ⁡a<0\),\(\ln ⁡b>0\),

所以\(g'(x)=0\)有唯一解 \(x_0=\log _{\frac{b}{a}}\left(-\dfrac{\ln a}{\ln b}\right)\),

令\(h(x)=g'(x)\),则\(h'(x)=(a^x \ln ⁡a+b^x \ln ⁡b)'=a^x (\ln ⁡a)^2+b^x (\ln ⁡b)^2\),

对于任意\(x\in R\),都有\(h'(x)>0\),

故\(g'(x)=h(x)\)在\(R\)上单调递增,

则\(x\in (-∞,x_0 )\)时,\(g'(x)<0\),\(x\in (x_0,+∞)\)时,\(g'(x)>0\),

故函数\(g(x)\)在\((-∞,x_0 )\)时单调递减,在\((x_0,+∞\))时单调递增,

故\(g(x)_{min}=g(x_0 )\);

若\(g(x_0 )<0\),当\(x<\log _a⁡2\)时, \(a^x>a^{\log _a2}=2\),\(b^x>0\),

则\(g(x)>0\),因此当\(x_1<\log _a⁡2\)且\(x_10\),

此时\(g(x)\)在\((x_1,x_0 )\)内有零点,则\(g(x)\)至少有两个零点,与题意不符;

故\(g(x_0)≥0\),则\(g(x)\)的最小值为\(g(x_0)=0\),

因为由题意知\(0\)为\(g(x)\)的唯一零点,故\(x_0=0\),

即\(x_0=\log_ \frac{b}{a}\left(-\dfrac{\ln a}{\ln b}\right)=0\), \(-\dfrac{\ln a}{\ln b}=1\),

则\(\ln ⁡a+\ln ⁡b=0\),\(\ln ⁡ab=0\),\(ab=1\),

即\(ab\)值为\(1\).

答案 (1)\([e,+∞)\);(2)\((0,e)\) .

解析 (1)\([e,+∞)\)(过程略);

(2)由题意得\(ae^x-x-2-\ln ⁡(x+2)+x+\ln ⁡a=0\)在\(x>-2\)上有两个根,

即 \(e^{x+\ln a}+x+\ln a=\ln (x+2)+x+2=e^{\ln (x+2)}+\ln (x+2)\),(同构)

令\(h(x)=x+e^x\),则\(h(x)\)单调递增,而\(h(x+\ln ⁡a)=h(\ln ⁡(x+2))\)

所以\(x+\ln ⁡a=\ln ⁡(x+2)\),问题转化为\(\ln ⁡a=\ln ⁡(x+2)-x\)在\(x>-2\)时有\(2\)实根,

令\(t(x)=\ln ⁡(x+2)-x\),则 \(t^{\prime}(x)=-\dfrac{x+1}{x+2}\),

当\(-20\),\(t(x)\)单调递增,

当\(x<-2\)或\(x>-1\)时,\(t'(x)<0\),\(t(x)\)单调递减,

所以\(t(x)⩽t(-1)=1\),且在\((-2,-1)\),\((-1,+∞)\)上的值域都为\((-∞,-1]\),

综上\(\ln ⁡a<1\),所以\(0

故\(a\)的取值范围为\((0,e)\).

【B组---提高题】

1.己知函数\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\).

(1)当\(a≥0\)时,求\(f(x)\)的单调区间和极值;

(2)讨论\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\)的零点的个数.

2.已知函数\(f(x)=(x-2)e^x+a(x-1)^2\)有两个零点,求\(a\)的取值范围.

参考答案

答案 (1)单调递减区间为\((-∞,0)\),单调递增区间为\((0,+∞)\);极小值为\(0\),无极大值;

(2) 当\(a≥0\)或\(a=-1\)时,\(f(x)\)有\(1\)个零点;

当\(a<0\)且\(a≠-1\)时,\(f(x)\)有\(2\)个零点.

解析 (1)\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\)的定义域为\((-∞,+∞)\),\(f'(x)=e^x-1+ax\),

\(\because a≥0\),\(\therefore f'' (x)=e^x+a>0\),

则\(f'(x)=e^x-1+ax\)在\((-∞,+∞)\)上单调递增,

又\(f'(0)=0\),

所以当\(x\in (-∞,0)\)时,\(f'(x)<0\),当\(x\in (0,+∞)\)时,\(f'(x)>0\),

即\(f(x)\)的单调递减区间为\((-∞,0)\),单调递增区间为\((0,+∞)\);

\(f(x)\)的极小值为\(f(0)=0\),\(f(x)\)无极大值;

(2)当\(a≥0\)时,由(1)知\(f(x)≥f(0)=0\),

故\(f(x)\)仅有一个零点\(x=0\);

当\(a<0\)时,\(f'' (x)=e^x+a\),

令\(f'' (x)=0⇒x=\ln ⁡(-a)\);

令\(f'' (x)>0⇒x>\ln ⁡(-a)\),

所以\(f'(x)\)在\(x\in (\ln ⁡(-a),+∞)\)上单调递增;

令\(f'' (x)<0⇒x<\ln ⁡(-a)\),

所以\(f'(x)\)在\(x\in (-∞,\ln ⁡(-a))\)上单调递减,且\(f'(0)=0\),\(f(0)=0\),

所以\(f'(x)≥f'(\ln ⁡(-a))\),

最小值\(f'(\ln ⁡(-a))\)与\(0\)的比较等价于\(\ln ⁡(-a)\)与\(0\)的大小比较,

所以分三类进行讨论:

①当\(-1

由\(f'(x)\)在\(x\in (-∞,\ln ⁡(-a))\)上单调递减及在\(x\in (\ln ⁡(-a),+∞)\)上单调递增,

且\(f'(0)=0\),\(x→-∞⇒f'(x)→+∞\)

由零点存在定理,得\(f'(x)\)在\(x\in (-∞,\ln ⁡(-a))\)上存在唯一零点,设为\(x_0\),所以

$x$ $(-∞,x_0 )$ $x_0$

$(x_0,0)$ $0$ $(0,+∞)$

$f'(x)$ $+$ $0$

$-$ $0$ $+$

$f(x)$ 递增 极大值 递减 极小值 $f(0)=0$ 递增

又\(f(0)=0\)及\(x→-∞⇒f(x)→-∞\)由零点存在定理,

得\(f(x)\)在\(x\in (-∞,0)\)上存在唯一零点,设为\(x_1\),

综上,当\(-1

②当\(a=-1\)时,即\(\ln ⁡(-a)=0\)时,

由\(f'(x)\)在\(x\in (-∞,0)\)上单调递减及在\(x\in (0,+∞)\)上单调递增,且\(f'(x)≥f'(0)=0\),

得\(f(x)\)在\((-∞,+∞)\)上单调递增,

故\(f(x)\)在\((-∞,+∞)\)上只有一个零点\(x=0\);

③当\(a<-1\)时,

同理可得\(f(x)\)在\((-∞,+∞)\)上存在\(2\)个零点:一个为\(x=0\),一个为\(x_2\in (0,+∞)\),

综上可得,当\(a≥0\)或\(a=-1\)时,\(f(x)\)有\(1\)个零点;

当\(a<0\)且\(a≠-1\)时,\(f(x)\)有\(2\)个零点.

答案 \((0,+∞)\)

解析 法一 分类讨论

\(\because\)函数\(f(x)=(x-2)e^x+a(x-1)^2\),

\(\therefore f'(x)=(x-1)e^x+2a(x-1)=(x-1)(e^x+2a)\),

①若\(a=0\),那么\(f(x)=0⇔(x-2)e^x=0⇔x=2\),

函数\(f(x)\)只有唯一的零点\(2\),不合题意;

②若\(a>0\),那么\(e^x+2a>0\)恒成立,

当\(x<1\)时,\(f'(x)<0\),此时函数为减函数;

当\(x>1\)时,\(f'(x)>0\),此时函数为增函数;

此时当\(x=1\)时,函数\(f(x)\)取极小值\(-e\),

由\(f(2)=a>0\),可得:函数\(f(x)\)在\(x>1\)存在一个零点;

当\(x<1\)时,\(e^x

\(\therefore f(x)=(x-2)e^x+a(x-1)^2>(x-2)e+a(x-1)^2=a(x-1)^2+e(x-1)-e\),

(使用放缩法)

方程\(a(x-1)^2+e(x-1)-e=0\)显然由两个不相等的实数根,

设为两根为\(t_1\),\(t_2\),且\(t_1<1

则当\(xa(x-1)^2+e(x-1)-e>0\),

(由\(x→-∞\)时,\(y=x-2→-∞\),\(y=e^x→0\),\(y=a(x-1)^2→+∞\),而二次函数比一次函数的增长速度快,\(f(x)→+∞\)可得函数\(f(x)\)在\(x<1\)存在一个零点,以上的证法更严谨但难度较大)

故函数\(f(x)\)在\(x<1\)存在一个零点;

即函数\(f(x)\)在\(R\)是存在两个零点,满足题意;

③若 \(-\dfrac{e}{2}

当\(x<\ln ⁡(-2a)\)或\(x>1\)时,\(f'(x)=(x-1)(e^x+2a)>0\)恒成立,

故\(f(x)\)单调递增,

当\(\ln ⁡(-2a)

故\(f(x)\)单调递减,

故当\(x= \ln ⁡(-2a)\)时,函数取极大值,

由\(f(\ln ⁡(-2a))=[\ln ⁡(-2a)-2](-2a)+a[\ln ⁡(-2a)-1]^2=a{[\ln ⁡(-2a)-2]^2+1}<0\)得:函数\(f(x)\)在\(R\)上至多存在一个零点,不合题意;

④若 \(a=-\dfrac{e}{2}\),则\(\ln ⁡(-2a)=1\),函数\(f(x)\)在\(R\)上单调递增,

函数\(f(x)\)在\(R\)上至多存在一个零点,不合题意;

⑤若\(a<-\dfrac{e}{2}\),则\(\ln ⁡(-2a)>\ln ⁡e=1\),

当\(x<1\)或\(x>\ln ⁡(-2a)\)时,\(f'(x)=(x-1)(e^x+2a)>0\)恒成立,

故\(f(x)\)单调递增,

当\(1

故\(f(x)\)单调递减,

故当\(x=1\)时,函数取极大值,

由\(f(1)=-e<0\)得:函数\(f(x)\)在\(R\)上至多存在一个零点,不合题意;

综上所述,\(a\)的取值范围为\((0,+∞)\).

法二 分类参数

解:显然\(x=1\)不是函数\(f(x)\)的零点,

当\(x≠1\)时,方程\(f(x)=0\)等价于 \(-a=\dfrac{x-2}{(x-1)^2} \cdot e^x\),

设 \(g(x)=\dfrac{x-2}{(x-1)^2} \cdot e^x\),求导 \(g^{\prime}(x)=e^x \cdot \dfrac{x^2-4 x+5}{(x-1)^3}\),

当\(x<1\)时,\(g'(x)<0\);当\(x>1\)时,\(g'(x)>0\);

\(\therefore\)函数\(g(x)\)在\((-∞,1)\)上单调递减,在\((1,+∞)\)上单调递增,

且\(x→-∞\)时,\(g(x)→0\);\(x→1\)时,\(g(x)→-∞\);\(x→+∞\)时,\(g(x)→+∞\);

\(\therefore\)函数\(g(x)\)在\((-∞,1)\)上的值域为\((-∞,0)\),在\((1,+∞)\)上的值域为\((-∞,+∞)\),

\(\therefore\)当\(-a<0\)时,函数\(f(x)\)有两个零点,

故所求\(a\)取值范围为\((0,+∞)\).

【C组---拓展题】

1.已知函数\(f(x)=\ln ⁡x\).

(1)若\(af(x)⩽e^{x-1}-1\)恒成立,求实数\(a\)的值;

(2)若关于\(x\)的方程\(f\left(x^2\right)-x+\dfrac{m}{x}-\ln m=0\)有四个不同的实数根,则实数\(m\)的取值范围.

2.已知函数\(f(x)=\ln ⁡x-a^2 x^2+ax\).

(1)求函数\(f(x)\)在定义域内的最值.

(2)当\(a>0\)时,若\(y=f'(x)\)有两个不同的零点\(x_1\),\(x_2\),求证:\(a(x_1+x_2 )>2\).

参考答案

答案 (1) \(a=1\);(2) \((0,1)\) .

解析 (1)\(a=1\).(过程略)

(2)解法一:由题意知,\(m>0\), \(h(x)=\ln x^2-x+\dfrac{m}{x}-\ln m\),

\(h^{\prime}(x)=\dfrac{2}{x}-1-\dfrac{m}{x^2}=\dfrac{-x^2+2 x-m}{x^2}\),

当\(x<0\)时,\(h'(x)<0\),\(h(x)\)在区间\((-∞,0)\)单调递减,

又 \(h(-\sqrt{m})=0\),故\(h(x)\)在区间\((-∞,0)\)有唯一实根,

若\(m⩾1\),\(-x^2+2x-m=-(x-1)^2+1-m⩽0\),

当\(x>0\)时,\(h'(x)≤0\),\(h(x)\)在区间\((0,+∞)\)单调递减,

故\(h(x)\)在区间\((0,+∞)\)至多有一个实根,不符合题意,

若\(0

易得\(0

故\(h(x)\)在区间\((0,x_1 )\),\((x_2,+∞)\)上单调递减,在区间\((x_1,x_2 )\)上单调递增.

\(h\left(x_1\right)=\ln x_1^2-x_1+\dfrac{m}{x_1}-\ln m=\ln x_1^2-x_1+\dfrac{-x_1^2+2 x_1}{x_1}-\ln \left(-x_1^2+2 x_1\right)\)

\(=-2x_1+2+\ln ⁡x_1-\ln ⁡(2-x_1 )\),

设\(φ(x)=-2x+2+\ln ⁡x-\ln ⁡(2-x)(0

则 \(\varphi^{\prime}(x)=-2+\dfrac{1}{x}+\dfrac{1}{2-x}=\dfrac{2(x-1)^2}{x(2-x)}>0\),

\(φ(x)<φ(1)=0\),\(h(x_1 )<0\),

同理可证\(h(x_2 )>0\),

取 \(x_3=\left(1+\sqrt{2+\dfrac{1}{m}}\right)^2>x_2=1+\sqrt{1-m}\), \(h\left(x_3\right)<2 \sqrt{x_3}-x_3+1+\dfrac{1}{m}=0\).

取 \(x_4=\min \left\{\ln \dfrac{1}{m}, \dfrac{m^2}{4}\right\}\), \(x_4 \leqslant \dfrac{m^2}{4}<\dfrac{m}{2}

\(h\left(x_4\right)>2 \sqrt{x_4}-\dfrac{2}{\sqrt{x_4}}+\dfrac{m}{x_4}+\left(\ln \dfrac{1}{m}-x_4\right)=2 \sqrt{x_4}+\dfrac{m-2 \sqrt{x_4}}{x_4}+\left(\ln \dfrac{1}{m}-x_4\right)>0\).

故\(h(x)\)在\((x_4,x_1 )\),\((x_1,x_2 )\),\((x_2,x_3 )\)各存在一个零点,

实数\(m\)的取值范围是\((0,1)\).

解法二:由题意知,\(m>0\), \(h(x)=\ln x^2-x+\dfrac{m}{x}-\ln m\),

\(h^{\prime}(x)=\dfrac{2}{x}-1-\dfrac{m}{x^2}=\dfrac{-x^2+2 x-m}{x^2}\),

当\(x<0\)时,\(h'(x)<0\),\(h(x)\)在区间\((-∞,0)\)单调递减,

又 \(h(-\sqrt{m})=0\),故\(h(x)\)在区间\((-∞,0)\)有唯一实根,

因此当\(x>0\)时,\(\ln x-x=\ln \dfrac{m}{x}-\dfrac{m}{x}\)有三个实根,

当\(x=\dfrac{m}{x}\), \(x=\sqrt{m}\)是方程的一个实根,

若\(x \neq \dfrac{m}{x}\), \(\ln x-\ln \dfrac{m}{x}=x-\dfrac{m}{x}\), \(\dfrac{1}{\sqrt{m}}>\dfrac{\ln x-\ln \dfrac{m}{x}}{x -\dfrac{m}{x}}=1\)(对数均值不等式),

所以\(0

故\(m\)的取值范围为\((0,1)\).

答案 (1) 最大值\(-\ln ⁡a\),无最小值;(2)略 .

解析 (1)函数\(f(x)=\ln ⁡x-a^2 x^2+ax\)的定义域为\((0,+∞)\),

\(f^{\prime}(x)=\dfrac{1}{x}-2 a^2 x+a=-\dfrac{(2 a x+1)(a x-1)}{x}\),

当\(a=0\)时,\(f(x)=\ln ⁡x\),

此时函数\(f(x)\)为增函数,无最值,

当\(a≠0\)时,令\(f'(x)=0\),得\(x=-\dfrac{1}{2a}\)或\(x=\dfrac{1}{a}\),

①若\(a<0\),则\(-\dfrac{1}{2a}>0\),\(\dfrac{1}{a} <0\),

由\(f'(x)>0\),得\(0

由\(f'(x)<0\),得\(x>-\dfrac{1}{2a}\),\(f(x)\)单调递减,

所以函数\(f(x)\)在定义域内有最大值\(f\left(-\dfrac{1}{2 a}\right)=\ln \left(-\dfrac{1}{2 a}\right)-a^2\left(-\dfrac{1}{2 a}\right)^2+a\cdot \left(-\dfrac{1}{2 a}\right)=\ln \left(-\dfrac{1}{2 a}\right)-\dfrac{3}{4}\),无最小值.

②若\(a>0\),则\(-\dfrac{1}{2a}<0\),\(\dfrac{1}{a} >0\),

由\(f'(x)>0\),得\(0

由\(f'(x)<0\),得\(x>\dfrac{1}{a}\),\(f(x)\)单调递减,

所以\(f(x)\)定义域内有最大值\(f\left(\dfrac{1}{a}\right)=\ln \left(\dfrac{1}{a}\right)-a^2\left(\dfrac{1}{a}\right)^2+a\cdot \dfrac{1}{a} =-\ln a\),无最小值.

(2)证明:由(1)知,当\(a>0\)时,函数\(f(x)\)在定义域内的最大值为\(f\left(\dfrac{1}{a}\right)=-\ln a\),

因为\(y=f(x)\)有两个不同的零点\(x_1\),\(x_2\),

所以\(-\ln ⁡a>0\),解得\(-\ln ⁡a>0\), 解得\(0

不妨设\(0

由题意知\(f(x_1 )=\ln ⁡x_1-a^2 x_1^2+ax_1=0\),\(f(x_2 )=\ln ⁡x_2-a^2 x_2^2+ax_2=0\),

所以\(\ln ⁡x_2-\ln ⁡x_1=a^2 (x_2^2-x_1^2 )-ax_2+ax_1\),

即\(\ln \dfrac{\ln x_2-\ln x_1}{x_2-x_1}=a\left[a\left(x_2+x_1\right)-1\right]\),

即\(\dfrac{\ln \dfrac{x_2}{x_1}}{\dfrac{x_2}{x_1}-1}=a\left[a\left(x_1+x_2\right)-1\right] x_1\),

设 \(h(t)=\ln t-\dfrac{2(t-1)}{t+1}(t>1)\),

则 \(h^{\prime}(t)=\dfrac{1}{t}-\dfrac{4}{(t+1)^2}=\dfrac{(t-1)^2}{t(t+1)^2}(t>1)\),

所以当\(t>1\)时,\(h'(t)>0\),\(h(t)\)单调递增,

所以\(h(t)>h(1)=0\),

即\(\ln t-\dfrac{2(t-1)}{t+1}>0\),所以 \(\dfrac{\ln t}{t-1}>\dfrac{2}{t+1}\),

令\(t=\dfrac{x_2}{x_1}\) ,

则上式可化为 \(\dfrac{\ln \dfrac{x_2}{x_1}}{\dfrac{x_2}{x_1}-1}>\dfrac{2}{\dfrac{x_2}{x_1}+1}\),

所以 \(a\left[a\left(x_1+x_2\right)-1\right] x_1>\dfrac{2}{\dfrac{x_2}{x_1}+1}\),

所以 \(a\left[a\left(x_1+x_2\right)-1\right] x_1>\dfrac{2}{x_1+x_2}\),

即\(a^2 (x_1+x_2 )^2-a(x_1+x_2 )-2>0\),

所以\([a(x_1+x_2 )-2][a(x_1+x_2 )+1]>0\),

又因为\(a(x_1+x_2 )+1>0\)恒成立,

所以\(a(x_1+x_2 )>2\).

🎈 相关推荐

狮舞(广东醒狮)
bt365最新网址

狮舞(广东醒狮)

📅 07-08 👀 1901
2024必玩3d格斗网游排行榜 好玩的3d格斗网游有什么
bat365手机版官网

2024必玩3d格斗网游排行榜 好玩的3d格斗网游有什么

📅 07-27 👀 6558
苹果手机回车键在哪  ( 苹果手机自带键盘怎么换行? )
bat365手机版官网

苹果手机回车键在哪 ( 苹果手机自带键盘怎么换行? )

📅 08-13 👀 2279