$x$ $(-∞,-\sqrt{2})$ $-\sqrt{2}$
$(-\sqrt{2},\sqrt{2})$ $\sqrt{2}$ $(\sqrt{2},+∞)$
$f'(x)$ $+$ $0$ $-$ $0$ $+$
$f(x)$ ↗ 极大值 ↘ 极小值 ↗
\(\therefore f(x)\)的极大值是\(f(-\sqrt{2})=8\sqrt{2}\),极小值是\(f(\sqrt{2})=-8\sqrt{2}\),
且当\(f(-3)=-18<0\),\(f(3)=18>0\),
\(\therefore f(-3)\cdot f(-\sqrt{2})<0\),\(f(3)\cdot f(\sqrt{2})>0\),
\(\therefore f(x)\)在\((-∞,-\sqrt{2})\)、\((-\sqrt{2},\sqrt{2})\)、\((\sqrt{2},∞)\)上各有\(1\)个零点,
故函数\(f(x)\)有三个零点,即方程\(f(x)=0\)解的个数是\(3\).
证明 \(f^{\prime}(x)=\dfrac{1}{x+1}-\cos x\),
当\(x \in\left(\dfrac{\pi}{2}, \pi\right)\)时,\(-\cos x>0\), \(\dfrac{1}{x+1}>0\),
\(\therefore f^{\prime}(x)=\dfrac{1}{x+1}-\cos x>0\),\(\therefore f(x)\)单调递增,
而\(f\left(\dfrac{\pi}{2}\right)=\ln \left(\dfrac{\pi}{2}+1\right)-1<0\),\(f(π)=\ln (π+1)>0\),
所以\(f(x)\)在\(\left(\dfrac{\pi}{2}, \pi\right)\)上有且仅有一个零点\(x_0\);
当\(x∈[π,+∞)\)时,\(f(x)=\ln (x+1)-\sin x>\ln (π+1)-1>0\),
所以以\(f(x)\)在\([π,+∞)\)上无零点;
综上所述,\(f(x)\)有且仅有一个零点.
【题型2】 分离参数法
【典题1】 若\(f(x)=ae^2x+(a-2)e^x-x\)有两个零点,求\(a\)的取值范围.
解析 依题意, \(f(x)=0 \Leftrightarrow a\left(e^{2 x}+e^x\right)=2 e^x+x \Leftrightarrow a=\dfrac{2 e^x+x}{e^{2 x}+e^x}\),
令\(g(x)=\dfrac{2 e^x+x}{e^{2 x}+e^x}\),
则\(g^{\prime}(x)=\dfrac{\left(2 e^x+1\right)\left(e^{2 x}+e^x\right)-\left(2 e^x+x\right)\left(2 e^{2 x}+e^x\right)}{\left(e^{2 x}+e^x\right)^2}=\dfrac{\left(2 e^x+1\right)\left(1-e^x-x\right)}{e^x\left(e^x+1\right)^2}\),
令\(h(x)=1-e^x-x\),
显然函数\(h(x)\)是\(R\)上的减函数,而\(h(0)=0\),
当\(x<0\)时,\(h(x)>0\),\(g'(x)>0\),当\(x>0\)时,\(h(x)<0\),\(g'(x)<0\),
因此,函数\(g(x)\)在\((-∞,0)\)上单调递增,在\((0,+∞)\)上单调递减,
当\(x=0\)时,\(g(x)_{max}=g(0)=1\),
而\(g(-1)=\dfrac{2-e}{e^{-1}+1}<0\),
又当\(x>0\)时,\(g(x)>0\)恒成立,
函数\(f(x)\)有两个零点,等价于直线\(y=a\)与函数\(y=g(x)\)的图象有两个公共点,
在同一坐标系内作出直线\(y=a\)与函数\(y=g(x)\)的图象,如图,
由图象知,当且仅当\(0
所以\(a\)的取值范围是\((0,1)\). 点拨 利用分离参数法,能把含参函数问题转化为不含参函数问题. 【巩固练习】 1.已知函数\(f(x)=(x-a)\ln x(a∈R)\),若函数\(f(x)\)存在三个单调区间,则实数\(a\)的取值范围是\(\underline{\quad \quad}\) . 2.讨论函数\(g(x)=\dfrac{1}{x}-\dfrac{m}{x^2}-\dfrac{x}{3}(x>0)\)零点的个数. 3.已知函数\(f(x)=\dfrac{x^2+2 x+4}{x+2}\). (1)求函数\(f(x)\)在区间\([-1,1]\)上的最值; (2)若关于\(x\)的方程\((x+2)f(x)-ax=0\)在区间\((0,3)\)内有两个不等实根,求实数\(a\)的取值范围. 参考答案 答案 \(\left(-\dfrac{1}{e^2}, 0\right)\) 解析 \(f^{\prime}(x)=\ln x+\dfrac{1}{x}(x-a)=\ln x+1-\dfrac{a}{x}\), 函数\(f(x)=(x-a)\ln x(a∈R)\),若函数\(f(x)\)存在三个单调区间, 即\(f'(x)=0\)有两个不等实根,即\(a=x(\ln x+1)\)有两个不等实根, 转化为\(y=a\)与\(y=x(\ln x+1)\)的图像有两个不同的交点, \(y'=\ln x+2\),令\(\ln x+2=0\),即\(x=\dfrac{1}{e^2}\) , 即\(y=x(\ln x+1)\)在\(\left(0, \dfrac{1}{e^2}\right)\)上单调递减,在\(\left(\dfrac{1}{e^2},+\infty\right)\)上单调递增 , \(y_{min}=-\dfrac{1}{e^2}\), 当\(x\in \left(0, \dfrac{1}{e^2}\right)\)时,\(y<0\), 所以\(a\)的范围为\(\left(-\dfrac{1}{e^2}, 0\right)\). 答案 当\(m>\dfrac{2}{3}\)时,函数\(g(x)\)无零点; 当\(m=\dfrac{2}{3}\)或\(m≤0\)时,函数\(g(x)\)有且仅有一个零点; 当\(0 解析 令\(g(x)=0\),得\(m=-\dfrac{1}{3} x^3+x(x>0)\), 设\(h(x)=-\dfrac{1}{3} x^3+x(x>0)\), 所以\(h'(x)=-x^2+1=-(x-1)(x+1)\), 当\(x\in (0,1)\)时,\(h'(x)>0\),此时\(h(x)\)在\((0,1)\)上为增函数; 当\(x\in (1,+∞)\)时,\(h'(x)<0\),此时\(h(x)\)在\((1,+∞)\)上为减函数, 所以当\(x=1\)时,\(h(x)\)取极大值\(h(1)=-1+\dfrac{1}{3}=\dfrac{2}{3}\), 且\(x→0\)时\(h(x)→0\),\(x→+∞\)时\(h(x)→-∞\), 故当\(m>\dfrac{2}{3}\)时,函数\(y=m\)和函数\(y=h(x)\)无交点; 当\(m=\dfrac{2}{3}\)时,函数\(y=m\)和函数\(y=h(x)\)有且仅有一个交点; 当\(0 当\(m≤0\)时,函数\(y=m\)和函数\(y=h(x)\)有且仅有一个交点. 综上所述,当\(m>\dfrac{2}{3}\)时,函数\(g(x)\)无零点; 当\(m=\dfrac{2}{3}\)或\(m≤0\)时,函数\(g(x)\)有且仅有一个零点, 当\(0 答案 (1)最大值为\(3\),最小值为\(2\);(2) \(\left(6, \dfrac{19}{3}\right)\). 解析 (1)最大值为\(3\),最小值为\(2\)(过程略). (2)因为关于于\(x\)的方程\((x+2)f(x)-ax=0\)在区间\((0,3)\)内有两个不等实根, 则\((x+2) \cdot \dfrac{x^2+2 x+4}{x+2}-a x=0\)在区间\((0,3)\)内有两个不等实根, 所以\(x^2+2x+4-ax=0\)在区间\((0,3\))内有两个不等实根, 所以\(a=\dfrac{x^2+2 x+4}{x}\)在区间\((0,3)\)内有两个不等实根, 令\(g(x)=\dfrac{x^2+2 x+4}{x}\),\(x\in (0,3)\), \(g(x)=x+2+\dfrac{4}{x} \geqslant 2 \sqrt{x \cdot \dfrac{4}{x}}+2=6\) (当且仅当\(x=2\)时,取等号), \(x→0\)时,\(g(x)→+∞\); \(g(3)=\dfrac{3^2+2 \times 3+4}{3}=\dfrac{19}{3}\), 所以\(a\)的取值范围为 \(\left(6, \dfrac{19}{3}\right)\). 【题型3】直接法 【典题1】 讨论函数\(f(x)=x\ln x-\dfrac{1}{2} x^2+(a-1)x(a\in R)\)的极值点的个数. 解析 \(f(x)\)的定义域是\((0 ,+∞)\),\(f'(x)=\ln x-x+a\), 令\(g(x)=\ln x-x+a\),则\(f'(x)=\ln x-x+a\),(构造函数,二次求导) 当\(x\in (0 ,1)\)时,\(g^{\prime}(x)>0\),\(g(x)\)单调递增,即\(f'(x)\)单调递增; 当\(x\in (1 ,+∞)\)时,\(g'(x)<0\), \(g(x)\)单调递减,即\(f'(x)\)单调递减; 所以当\(x=1\)时,\(f'(x)\)有极大值\(f'(1)=a-1\),也是最大值, (确定\(f'(x)\)的最大值\(a-1\),想下函数图象\(a-1\)与\(0\)的大小比较决定导函数\(y=f'(x)\)是否存在零点) ① 当\(a-1≤0\),即\(a≤1\)时, 所以\(f(x)\)在\((0 ,+∞)\)上单调递减,此时\(f(x)\)无极值, ② 当\(a>1\)时,\(f'(1)=a-1>0\), \(f^{\prime}\left[\left(\dfrac{1}{e}\right)^{a+1}\right]=\ln \left(\dfrac{1}{e}\right)^{a+1}-\left(\dfrac{1}{e}\right)^{a+1}+a\)\(=-a-1-\left(\dfrac{1}{e}\right)^{a+1}+a=-1-\left(\dfrac{1}{e}\right)^{a+1}<0\), 易证\(x>1\)时,\(e^x>2x\), 所以\(a>1\),\(f'(e^a )=2a-e^a<0\), 故存在\(x_1\) ,\(x_2\)满足\(0<\left(\dfrac{1}{e}\right)^{a+1} 当\(x\in (0 ,x_1)\)时,\(f(x)\)单调递减, 当\(x\in (x_1 ,x_2)\)时,\(f(x)\)单调递增, 当\(x\in (x_2 ,+∞)\)时,\(f(x)\)单调递减, 所以\(f(x)\)在\(x=x_1\)处有极小值,在\(x=x_2\)处有极大值. 综上所述,当\(a≤1\)时,\(f(x)\)没有极值点;当\(a>1\)时,\(f(x)\)有\(2\)个极值点. 点拨 ① 求出导函数\(f'(x)=\ln x-x+a\),它的图象很难确定,不知道是否存在零点(这与原函数单调性有关),则考虑二次求导进行分析; ② 当\(a>1\)时,导函数\(f'(x)=\ln x-x+a\)存在零点\(x_1\) ,\(x_2\)是怎么确定的? 误区1:\(y=f'(x)\)最大值在\(x\)轴上方且是“先增后减”,想当然说它有两个零点是不严谨的.因为\(y=f'(x)\)的图象可能如下左图,则只有一个零点;如右图,甚至没有零点; 误区2:当\(x→0\)时,显然\(f'(x)→-∞\),当\(x→+∞\)时,显然\(f'(x)→-∞\), 那可知\(y=f'(x)\)存在两个零点,也不够严谨; 而因\(f^{\prime}\left[\left(\dfrac{1}{e}\right)^{a+1}\right]<0\), \(f'(e^a)=2a-e^a<0\), 由零点判定定理可确定\(y=f'(x)\)有两个零点\(x_1\)、\(x_2\). ③ 那“取点”\(\left(\dfrac{1}{e}\right)^{a+1}\)、\(e^a\)是怎么想到的呢?这需要些技巧,导函数\(f'(x)=\ln x-x+a\)中有参数\(a>1\),\(x\)取常数是不行的;因有\(\ln x\),想到含\(a\)的\(e\)指数幂,多尝试就可以! 【典题2】已知函数\(f(x)=\dfrac{1}{x}+a\ln x-a-1\),\(a\in R\). (1)讨论函数\(f(x)\)的单调性;(2)讨论函数\(f(x)\)的零点个数. 解析 (1) \(f^{\prime}(x)=-\dfrac{1}{x^2}+\dfrac{a}{x}=\dfrac{a x-1}{x^2}\), 当\(a≤0\)时,\(f'(x)<0\),故\(f(x)\)在\((0,+∞)\)上单调递减, 当\(a>0\)时, \(f^{\prime}(x)>0 \Rightarrow x>\dfrac{1}{a}\), \(f(x)\)在\(\left(0, \dfrac{1}{a}\right)\)上单调递减,在\(\left(\dfrac{1}{a},+\infty\right)\)上单调递增. (2)当\(a≤0\)时, \(f\left(\dfrac{1}{e}\right)=e-2 a-1 \geq e-1>0\),\(f(e)=\dfrac{1}{e}-1<0\),\(f(x)\)有唯一零点; 当\(a>0\)时,\(f(1)=-a<0\), (不用最小值\(f\left(\dfrac{1}{a}\right)=-a\ln a-1<0\),因为这个还要证明,用\(f(1)=-a<0\)容易,接着要在\(x=1\)两边各取点\(0 而\(e^{1+\frac{1}{a}}>1,\), \(f\left(e^{1+\frac{1}{a}}\right)=\dfrac{1}{e^{1+\frac{1}{a}}}+a\left(1+\dfrac{1}{a}\right)-a-1=\dfrac{1}{e^{1+\frac{1}{a}}}>0\),(取 \(x_2=e^{1+\frac{1}{a}}\)) \(\therefore f(x)\)在 \(\left(1, e^{1+\frac{1}{a}}\right)\)内有一个零点; \(f\left(e^{-a-1}\right)=e^{a+1}-(a+1)^2\),(取 \(x_1=e^{-a-1}<1\)) 令\(g(t)=e^t-t^2\),则\(g'(t)=e^t-2t\),\(g'' (t)=e^t-2\), 当\(t>1\)时,\(g'' (t)>e-2>0\),\(\therefore g'(t)\)单调递增, \(\therefore g'(t)>g'(1)=e-2>0\),\(\therefore g(t)\)单调递增, \(\therefore g(t)>g(1)=e-1>0\),故 \(f\left(e^{-a-1}\right)>0\), \(\because e^{-a-1}<1\),\(\therefore f(x)\)在\((e^{-a-1},1)\)内有一个零点; \(\therefore\)当\(a>0\)时\(f(x)\)有两个零点. 综上,当\(a≤0\)时\(f(x)\)有一个零点,当\(a>0\)时\(f(x)\)有两个零点. 【巩固练习】 1.若函数\(f(x)=-\dfrac{1}{3} x^3+a x^2+3 a^2 x-\dfrac{5}{3}\)仅有一个零点,求实数\(a\)的取值范围. 2.讨论函数\(f(x)=2 e^{2 x}-\dfrac{a}{x}\),\(x\in (0,1)\)的零点的个数. 3.已知函数\(f(x)=ax⋅\ln x\)(其中\(a≠0\),\(a\in R\)), \(g(x)=\dfrac{x-1}{x+1}\). (1)若存在实数\(a\)使得\(f(x)<\dfrac{1}{e}\)恒成立,求\(a\)的取值范围; (2)当\(a⩽\dfrac{1}{2}\)时,讨论函数\(y=f(x)-g(x)\)的零点个数. 参考答案 答案 \(\left(-1, \dfrac{\sqrt[3]{5}}{3}\right)\) 解析 函数\(f(x)\)只有一个零点, 因为\(f'(x)=-x^2+2ax+3a^2=-(x-3a)(x+a)\), ①当\(a<0\)时,由\(f'(x)>0\),解得\(3a 所以函数\(f(x)\)在区间\((3a,-a)\)上单调递增, 由\(f'(x)<0\),解得\(x<3a\)或\(x>-a\), 所以函数\(f(x)\)在区间\((-∞,3a)\),\((-a,+∞)\)上单调递减, 又\(f(0)=-\dfrac{5}{3}<0\), 所以只需要\(f(-a)<0\),解得\(-1
所以实数\(a\)的取值范围为\((-1,0)\). ②当\(a=0\)时,显然\(f(x)\)只有一个零点成立, ③当\(a>0\)时,由\(f'(x)>0\),解得\(-a 即\(f(x)\)在区间\((-a,3a)\)上单调递增, 由\(f'(x)<0\),解得\(x<-a\)或\(x>3a\), 即函数\(f(x)\)在区间\((-∞,-a)\),\((3a,+∞)\)上单调递减, 又\(f(0)=-\dfrac{5}{3}<0\), 所以只需\(f(3a)<0\),解得 \(0
综上,实数\(a\)的取值范围为\(\left(-1, \dfrac{\sqrt[3]{5}}{3}\right)\). 答案 当\(a≤0\)或\(a≥2e^2\)时,\(f(x)\)无零点;当\(0
解析 \(f^{\prime}(x)=4 e^{2 x}+\dfrac{a}{x^2}\) ①当\(a≤0\)时,\(f(x)>0\)恒成立,在\((0,1)\)上恒成立,\(\therefore f(x)\)在\((0,1)\)上无零点; ②当\(a≥2e^2\)时, \(\because f^{\prime}(x)=4 e^{2 x}+\dfrac{a}{x^2}>0\),在\((0,1)\)上恒成立, \(\therefore f(x)\)在\((0,1)\)上单调递增, \(\therefore f(x) ③当\(00\)在\((0,1)\)上恒成立, \(\therefore f(x)\)在\((0,1)\)上单调递增. 又\(\because\)当\(x\)趋向于\(0\)时,\(f(x)\)趋向于\(-∞\);且\(f(1)=2e^2-a>0\). 故由零点存在性定理可知:\(f(x)\)在\((0,1)\)上存在唯一一个零点, 综上:当\(a≤0\)或\(a≥2e^2\)时,\(f(x)\)在\((0,1)\)上无零点; 当\(0
答案 (1)\((-1,0)\); (2) 当\(a<0\)或\(a=\dfrac{1}{2}\)时,\(h(x)\)有\(1\)个零点,当\(0
解析 (1)因为\(f(x)=ax\ln x\),\(a≠0\),要使得\(f(x)<\dfrac{1}{e}\)在\((0,+∞)\)上恒成立, 所以\(a<0\),由\(f'(x)=a(\ln x+1)\), 由\(f'(x)=a(\ln x+1)>0\),解得\(0 由\(f'(x)=a(\ln x+1)<0\),解得\(x>\dfrac{1}{e}\) , 所以\(f(x)_{\max }=f\left(\dfrac{1}{e}\right)=-\dfrac{a}{e}\), 所以\(-\dfrac{a}{e}<\dfrac{1}{e}\),所以\(-1
所以\(a\)的取值范围为\((-1,0)\). (2)①当\(a<0\)时,当\(x\in (0,1)\)时,\(f(x)>0\),\(g(x)<0\), 所以\(y=f(x)-g(x)\)恒大于零, 当\(x=1\)时,\(y=f(x)-g(x)=0\), 令\(h(x)=f(x)-g(x)\), 所以\(a<0\)时,令\(h(x)\)在\((0,+∞)\)只有\(1\)个零点, ②当\(a>0\)时,令\(h(x)=f(x)-g(x)\), 则\(h(x)=a x \ln x-1+\dfrac{2}{x+1}(x>0)\), \(h^{\prime}(x)=a(\ln x+1)-\dfrac{2}{(x+1)^2}\), \(h^{\prime \prime}(x)=\dfrac{a}{x}+\dfrac{4}{(x+1)^3}\), 因为\(x>0\),所以\(h'' (x)>0\)恒成立, 所以\(h'(x)\)在\((0,+∞)\)上单调递增, 因为\(h(1)=0\),当\(h'(1)=0\),即\(a=\dfrac{1}{2}\)时, \(h'(x)\)在\((0,1)\)上恒小于零,在\((1,+∞)\)上恒大于零, 即 在\((0,1)\)上单调递减,在\((1,+∞)\)上单调递增, 所以\(h(x)⩾h(1)=0\),\(y=h(x)\)在\((0,+∞)\)只有\(1\)个零点, 若\(0
由于\(h'(x)\)在\((0,+∞)\)上单调递增, 所以\(h'(x)\)在\((0,1]\)上恒小于零,\(h(x)\)在\((0,1]\)上单调递减, 因为\(h(1)=0\),所以\(h(x)\)在\((0,1]\)上有唯一零点\(1\), 又因为\(h'(1)=a-\dfrac{1}{2}<0\), \(h^{\prime}\left(e^{\frac{2}{a}-1}\right)=2-\dfrac{2}{\left(e^{\frac{2}{a}-1}+1\right)^2}>0\), 所以存在 \(x_0 \in\left(1, e^{\frac{2}{a}-1}\right)\),使得\(h'(x_0 )=0\), 由于\(h'(x)\)在\((0,+∞)\)上单调递增, (1) , 所以\(h(x)\)在\((1,x_0 )\)上单调递减,在\((x_0,+∞)\)上单调递增, \(x_0 \in\left(1, e^{\frac{2}{a}-1}\right)\), 所以\(h(x_0 ) 又\(01\), \(h\left(e^{\frac{1}{a}}\right)=e^{\frac{1}{a}}-1+\dfrac{2}{e^{\frac{1}{a}+1}}>0\), 所以 \(x_0 结合\(h(x)\)在\((x_0,+∞)\)单调递增,\(h(x)\)在\((1,+∞)\)上有唯一零点, 又\(h(1)=0\), 所以\(0
又因为\(h(1)=0\), 所以\(0
综上所述,当\(a<0\)或\(a=\dfrac{1}{2}\)时,\(h(x)\)在\((0,+∞)\)只有\(1\)个零点, 当\(0
【题型4】几何法 【典题1】 函数\(g(x)=(x^2+1) e^x-mx-1\)在\([-1,+∞)\)有两个零点,求\(m\)的取值范围. 解析 函数\(g(x)=(x^2+1) e^x-mx-1\)在\([-1,+∞)\)有两个零点, 等价于\(s(x)=(x^2+1) e^x\)与\(t(x)=mx+1\)在\([-1,+∞)\)有两个交点, \(\because s'(x)=(x+1)^2 e^x≥0\),\(\therefore s(x)\)在\([-1,+∞)\)单调递增, 又 \(s(-1)=\dfrac{2}{e}\),\(s(0)=1\), 而函数\(t(x)=mx+1\)是过定点\((0,1)\)的直线,且斜率为\(m\), 则 \(\dfrac{1-\dfrac{2}{e}}{0-(-1)}=1-\dfrac{2}{e} \leq m<1\),或\(m>s'(0)=1\), 故m的取值范围为 \(1-\dfrac{2}{e} \leqslant m<1\)或\(m>1\). 点拨 函数能够转化为一次函数与其他形式函数的交点问题,可考虑这种方法;但还要注意到\(s(x)=(x^2+1) e^x\)是凹函数,因为\(s'' (x)>0\),若\(s(x)\)是凸函数,则\(m\)的范围就不一样了,但内容超纲不适合处理解答题,第二问利用分离参数法有难度 \(m=\dfrac{\left(x^2+1\right) e^x-1}{x}\),出现洛必达法则、隐零点. 【巩固练习】 1.函数 \(F(x)=\dfrac{a x-a}{e^x}+1(a<0)\)没有零点,求实数\(a\)的取值范围. 参考答案 答案 \((-e^2,0)\) 解析 由已知有 \(F(x)=\dfrac{a x-a+e^x}{e^x}=0\)没有解,即\(e^x=-a(x-1)\)无解, \(\therefore y_1=e^x\)与\(y_2=-a(x-1)\)两图象无交点, 设两图象相切于\((m,n)\)两点, \(\therefore\left\{\begin{array}{l} e^m=-a(m-1) \\ e^m=-a \end{array}\right.\),\(\therefore m=2\),\(a=-e^2\), \(\because\)两图象无交点,\(\therefore\)故\(a\)的取值范围是\((-e^2,0)\). 分层练习 【A组---基础题】 1.已知函数\(f(x)=ax^3+bx^2+cx\)在点\(x_0\)处取得极小值\(-4\),使其导数\(f'(x)>0\)的\(x\)的取值范围为\((1,3)\), (1)求\(f(x)\)的解析式; (2)若过点\(P(-1,m)\)作曲线\(y=f(x)\)的三条切线,求实数\(m\)的取值范围. 2.证明:\(a>1\), \(f(x)=(1+x^2 ) e^x-a\)在 \((-∞,+∞)\)上有且仅有一个零点. 3.已知函数 \(f(x)=\dfrac{1}{3} x^3-\dfrac{(k+1)}{2} x^2\),\(g(x)=\dfrac{1}{3}-kx\),且\(f(x)\)在区间\((2,+∞)\)上为增函数. (1)求实数\(k\)的取值范围; (2)若函数\(f(x)\)与\(g(x)\)的图象有三个不同的交点,求实数\(k\)的取值范围. 4.已知函数\(f(x)=ax^2+x-\ln x(a\in R)\). (1)当\(a=1\)时,求\(f(x)\)在区间 \(\left[\dfrac{1}{3}, 1\right]\)上的最值; (2)若\(g(x)=f(x)-x\)在定义域内有两个零点,求\(a\)的取值范围. 5.若 \(f(x)=e^{x-2}-a x\)有两个零点,求实数\(a\)的取值范围. 6.已知函数\(f(x)=x^2-a\ln x\), (1)求\(f(x)\)的单调区间; (2)如果\(a>0\),讨论函数\(y=f(x)\)在区间\((1,e)\)上零点的个数. 7.已知函数\(f(x)=x^3+ax+\dfrac{1}{4}\),\(g(x)=-\ln x\).用\(\min \{m,n\}\)表示\(m\),\(n\)中的最小值,设函数 \(h(x)=\min \{f(x), g(x)\}(x>0)\),讨论\(h(x)\)零点的个数 . 8.若\(f(x) =m^2 x^2-\ln x\)的图象与直线\(y=mx\)交于\(M(x_M,y_M )\),\(N(x_N,y_N )\),两点,且\(x_M>x_N>1\),求实数\(m\)的取值范围. 9.已知\(g(x)=a^x+b^x-2(01)\)有且只有\(1\)个零点,求\(ab\)的值. 10.已知\(a>0\),函数\(f(x)=ae^x-x-2\),函数\(g(x)=\ln (x+2)-x-\ln a\). (1)若对\(∀x\in R\),\(f(x)⩾0\)恒成立,求\(a\)的取值范围; (2)若方程\(f(x)=g(x)\)有两个根,求\(a\)的取值范围. 参考答案 答案 (1)\(f(x)=-x^3+6x^2-9x\);(2) \((-11,16)\) . 解析 (1)\(f(x)=-x^3+6x^2-9x\)(过程略). (2)设切点\((t,f(t))\),\(y-f(t)=f'(t)(x-t)\) \(y=(-3t^2+12t-9)(x-t)+(-t^3+6t^2-9t)\) \(=(-3t^2+12t-9)x+t(3t^2-12t+9)-t(t^2-6t+9)\) \(=(-3t^2+12t-9)x+t(2t^2-6t)\)过\((-1,m)\) \(\therefore m=(-3t^2+12t-9)(-1)+2t^3-6t^2\), \(\therefore 2t^3-3t^2-12t+9-m=0\), 设\(g(t)=2t^3-3t^2-12t+9-m\), 令\(g'(t)=6t^2-6t-12=6(t^2-t-2)=0\), 求得\(t=-1\),\(t=2\), 若要方程\(g(t)=0\)有三个根, 需\(\left\{\begin{array} { l } { g ( - 1 ) > 0 } \\ { g ( 2 ) < 0 } \end{array} \Rightarrow \left\{\begin{array} { l } { - 2 - 3 + 1 2 + 9 - m > 0 } \\ { 1 6 - 1 2 - 2 4 + 9 - m < 0 } \end{array} \Rightarrow \left\{\begin{array}{l} m<16 \\ m>-11 \end{array}\right.\right.\right.\) 故\(-11 证明 \(f'(x)=e^x (x^2+2x+1)=e^x (x+1)^2\),\(\therefore f'(x)≥0\), \(\therefore f(x)=(1+x^2 ) e^x-a\)在\((-∞,+∞)\)上为增函数. 而\(f(0)=1-a<0\), \(f(\sqrt{a})=(1+a) e^{\sqrt{a}}-a=e^{\sqrt{a}}+a\left(e^{\sqrt{a}}-1\right)>0\), \(\therefore f(x)\)在\((-∞,+∞)\)上有且只有一个零点. 答案 (1) \(k≤1\);(2) \(k<1-\sqrt{3}\). 解析 (1)\(k≤1\)(过程略). (2)欲使\(f(x)\)与\(g(x)\)的图象有三个不同的交点, 即函数\(h(x)=f(x)-g(x)\)有三个不同的零点, 设 \(h(x)=f(x)-g(x)=\dfrac{x^3}{3}-\dfrac{(k+1)}{2} x^2+k x-\dfrac{1}{3}\), \(h'(x)=x^2-(k+1)x+k=(x-k)(x-1)\), 令\(h'(x)=0\)得\(x=k\)或\(x=1\), 由(1)知\(k≤1\), ①当\(k=1\)时,\(h'(x)=(x-1)^2≥0\),\(h(x)\)在\(R\)上递增,显然不合题意. ②当\(k<1\)时,\(h(x)\),\(h'(x)\)随\(x\)的变化情况如下表: $x$ $(-∞,k)$ $k$ $(k,1)$ $1$ $(1,+∞)$ $h'(x)$ $+$ $0$ $-$ $0$ $+$ $h(x)$ $↗$ 极大值 $-\dfrac{k^3}{6}+\dfrac{k^2}{2}-\dfrac{1}{3}$ $↘$ 极小值 $\dfrac{k-1}{2}$ $↗$ 由于 \(h(1)=\dfrac{k-1}{2}<0\)且当\(x→+∞\)时,\(y→+∞\),当\(x→-∞\)时\(,y→-∞\), 若要函数\(h(x)=f(x)-g(x)\)有三个不同的零点, 故需 \(-\dfrac{k^3}{6}+\dfrac{k^2}{2}-\dfrac{1}{3}>0\),即\((k-1)(k^2-2k-2)<0\), \(\therefore\left\{\begin{array}{l} k<1 \\ k^2-2 k-2>0 \end{array}\right.\),解得 \(k<1-\sqrt{3}\), 综上,所求\(k\)的取值范围为\(k<1-\sqrt{3}\). 答案 (1)\(f(x)_{min}=\ln 2+\dfrac{3}{4}\),\(f(x)_{max}=2\);(2) \(\left(0, \dfrac{1}{2 e}\right)\). 解析 (1) \(f(x)_{min}=\ln 2+\dfrac{3}{4}\),\(f(x)_{max}=2\)(过程略) (2)令\(g(x)=f(x)-x=0\),得 \(a=\dfrac{\ln x}{x^2}\), 设 \(h(x)=\dfrac{\ln x}{x^2}(x>0)\), \(\because g(x)=f(x)-x\)在定义域内有两个零点, \(\therefore\)函数\(y=h(x)\)与\(y=a\)与在定义域内有两个交点 \(\because h^{\prime}(x)=\dfrac{1-2 \ln x}{x^3}\) , 令\(h'(x)>0\)得:\(0 \(\therefore h(x)\)在\((0,\sqrt{e})\)单调递增,在\((\sqrt{e},+∞)\)单调递减, 又\(\because h(\sqrt{e})=\dfrac{1}{2e}\),且当\(x→0\)时,\(h(x)→-∞\),当\(x→+∞\)时,\(h(x)→0\), 画出函数\(h(x)\)的大致图像,如图所示: 由图象可得, \(a \in\left(0, \dfrac{1}{2 e}\right)\), \(\therefore a\)的取值范围为 \(\left(0, \dfrac{1}{2 e}\right)\). 答案 \(\left(\dfrac{1}{e},+\infty\right)\). 解析 方法1 因为\(f(x)=e^{x-2}-ax\),所以 \(f^{\prime}(x)=e^{x-2}-a\), 当\(a⩽0\)时,\(f'(x)>0\),\(f(x)\)在\(R\)上单调递增, 故\(f(x)\)至多存在一个零点,不合题意; 当\(a>0\)时,由\(f'(x)=e^{x-2}-a=0\)得:\(x=2+\ln a\), 当\(x\in (-∞,2+\ln a)\)时,\(f'(x)<0\),\(f(x)\)在\((-∞,2+\ln a)\)上单调递减; 当\(x\in (2+\ln a,+∞)\)时,\(f'(x)>0\),\(f(x)\)在\((2+\ln a,+∞)\)上单调递增; 所以当\(x=2+\ln a\)时,\(f(x)\)取到最小值,且最小值为\(f(2+\ln a)=-a(1+\ln a)\). ①当\(0
②当\(a>\dfrac{1}{e}\)时,\(f(2+\ln a)<0\). 由于 \(f(0)=e^{-2}>0\), 所以\(f(x)\)在\((-∞,2+\ln a)\)上存在唯一零点. \(f(4+2 \ln a)=e^{2 \ln a+2}-a(4+2 \ln a)=e^2 a^2-a(4+2 \ln a)=a\left(e^2 a-2 \ln a-4\right)\). 设\(g(a)=e^2 a-2\ln a-4\), 则 \(g^{\prime}(a)=e^2-\dfrac{2}{e}=\dfrac{e^2 a-2}{a}=\dfrac{e^2}{a}\left(a-\dfrac{2}{e^2}\right)\), 当\(a>\dfrac{1}{e}\)时,\(g'(a)>0\), 所以\(g(a)\)在\(\left(\dfrac{1}{e},+\infty\right)\)上单调递增. 因为\(g\left(\dfrac{1}{e}\right)=e+2-4>0\), 所以\(g(a)>g\left(\dfrac{1}{e}\right)>0\),即\(f(4+2\ln a)>0\). 从而\(f(x)\)在\(R\)上有两个零点. 综上所述,\(a\)的取值范围为\(\left(\dfrac{1}{e},+\infty\right)\). 方法2 几何法 函数\(f(x)=e^{x-2}-ax\)有两个零点等价于函数\(g(x)=e^{x-2}\)与函数\(y=ax\)有两个交点, 设函数\(y=kx\)与函数\(g(x)=e^{x-2}\)相切,切点\(P(x_0,y_0)\), \(\because g'(x)=e^{x-2}\),\(\therefore k=g'(x_0 )=e^{x_0-2}\), 即切线方程为\(y=e^{x_0-2} x\),则\(y_0=e^{x_0-2} x_0\), 又\(g(x_0 )=e^{x_0-2}\),即\(y_0=e^{x_0-2}\),\(\therefore x_0=1\), \(\therefore k=e^{x_0-2}=\dfrac{1}{e}\), \(\therefore\)若函数\(g(x)=e^{x-2}\)与函数\(y=ax\)有两个交点,则\(a>\dfrac{1}{e}\), 所以\(a\)的取值范围为 \(\left(\dfrac{1}{e},+\infty\right)\). 答案 (1)当\(a≤0\),\(f(x)\)在\((0,+∞)\)上递增; 当\(a>0\),\(f(x)\)的增区间为\(\left(\sqrt{\dfrac{a}{2}},+\infty\right)\),减区间为\(\left(0, \sqrt{\dfrac{a}{2}}\right)\); (2)当\(0
当\(a=2e\)或\(a≥e^2\)时,函数\(f(x)\)有\(1\)零点; 当\(2e
解析(1)函数\(f(x)=x^2-a\ln x\)的导数 \(f^{\prime}(x)=2 x-\dfrac{a}{x}=\dfrac{2 x^2-a}{x}(x>0)\), 若\(a≤0\),则\(f'(x)>0\),即有\(f(x)\)在\((0,+∞)\)上递增; 若\(a>0\),由\(f'(x)>0\)得到\(x>\sqrt{\dfrac{a}{2}}\),由\(f'(x)<0\)得到\(0 即有\(a>0\)时,\(f(x)\)的增区间为\(\left(\sqrt{\dfrac{a}{2}},+\infty\right)\),减区间为\(\left(0, \sqrt{\dfrac{a}{2}}\right)\); (2)由(1)知\(f(x)\)的极小值为 \(f\left(\sqrt{\dfrac{a}{2}}\right)=\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)\),也为最小值. ① 当\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)>0\),即\(0
则\(y=f(x)\)在区间\((1,e)\)上无零点; ② 当\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)=0\),即\(a=2e\),即有\(1<\sqrt{\dfrac{a}{2}} 而\(f(1)=1>0\), \(f\left(\sqrt{\dfrac{a}{2}}\right)=0\),\(f(e)>0\), 则\(f(x)\)在\((1,e)\)上有一个零点; ③ 当\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)<0\),即\(a>2e\),即有\(\sqrt{\dfrac{a}{2}}>\sqrt{e}>1\), (i)若\(\sqrt{\dfrac{a}{2}} 当\(2e
当\(e^2≤a<2e^2\)时,\(f(e)≤0\),则\(f(x)\)在\((1,e)\)上有\(1\)个零点; (ii)若\(\sqrt{\dfrac{a}{2}}≥e\),即\(a≥2e^2\),而\(f(1)>0\),\(f(e)<0\), 则\(f(x)\)在\((1,e)\)上有\(1\)零点. 综上所述:当\(0
当\(a=2e\)或\(a≥e^2\)时,函数\(f(x)\)有\(1\)零点; 当\(2e
答案 当\(a>-\dfrac{3}{4}\),\(h(x)\)有\(0\)个零点, 当 \(a=-\dfrac{3}{4}\)或\(a≤-\dfrac{5}{4}\)时,\(h(x)\)有一个零点, 当\(-\dfrac{5}{4}
解析 当 \(x\in (1,+∞)\)时,\(g(x)=-\ln x<0\), \(\therefore\) 函数 \(h(x)=\min \{f(x), g(x)\} \leq g(x)<0\), 故\(h(x)\)在\((1,+∞)\)时无零点. 当\(x=1\)时,若\(a≥-\dfrac{5}{4}\),则\(f(1)=a+\dfrac{5}{4}≥0\), \(\therefore h(x)=\min \{f(1), g(1)\}=g(1)=0\), 故\(x=1\)是函数\(h(x)\)的一个零点; 若\(a<-\dfrac{5}{4}\),则\(f(1)=a+\dfrac{5}{4}<0\), \(\therefore h(x)=\min \{f(1), g(1)\}=f(1)<0\), 故\(x=1\)不是函数\(h(x)\)的零点; 当 \(x\in (0,1)\)时,\(g(x)=-\ln x>0\), 所以只需考虑\(f(x)\)在\((0,1)\)的零点个数, (i)若\(a≤-3\)或\(a≥0\),则\(f'(x)=3x^2+a\), 当\(a≥0\)时,\(f(x)\)在\((0,1)\)无零点, 当\(a≤-3\)时,\(f(x)\)在\((0,1)\)单调, 而\(f(0)=\dfrac{1}{4}\),\(f(1)=a+\dfrac{5}{4}\),\(f(x)\)在\((0,1)\)有一个零点, (ii)若\(-3
则\(f(x)\)在\(\left(0, \sqrt{-\dfrac{a}{3}}\right)\)单调递减,在\(\left(\sqrt{-\dfrac{a}{3}}, 1\right)\)单调递增, 故当 \(x=\sqrt{-\dfrac{a}{3}}\)时,\(f(x)\)取得最小值,最小值为 \(f\left(\sqrt{-\dfrac{a}{3}}\right)=\dfrac{2 a}{3} \sqrt{-\dfrac{a}{3}}+\dfrac{1}{4}\), ①若\(f\left(\sqrt{-\dfrac{a}{3}}\right)>0\),即\(-\dfrac{3}{4}
②若\(f\left(\sqrt{-\dfrac{a}{3}}\right)=0\),即\(a=-\dfrac{3}{4}\),则\(f(x)\)在\((0,1)\)有唯一零点, ③若\(f\left(\sqrt{-\dfrac{a}{3}}\right)<0\),即\(-3
所以当\(-\dfrac{5}{4}
当\(-3
综上所述,当\(a>-\dfrac{3}{4}\),\(h(x)\)有\(0\)个零点, 当 \(a=-\dfrac{3}{4}\)或\(a≤-\dfrac{5}{4}\)时,\(h(x)\)有一个零点, 当\(-\dfrac{5}{4}
答案 \(\left(-\dfrac{1}{2 e^{\frac{3}{4}}}, 0\right)\) 解析 令 \(m^2 x^2-\ln x=mx\) , 则由题意可知\(m^2 x^2-\ln x-mx=0\)有两个大于\(1\)的实数根,显然\(m≠0\). 令\(F(x)=m^2 x^2-\ln x-mx\), 则 \(F^{\prime}(x)=2 m^2 x-\dfrac{1}{x}-m=\dfrac{(2 m x+1)(m x-1)}{x}\). 若\(m>0\),则当 \(x \in\left(0, \dfrac{1}{m}\right)\)时,\(F'(x)<0\), 当 \(x \in\left(-\dfrac{1}{2 m}, \quad+\infty\right)\)时,\(F'(x)>0\), 要满足已知条件,必有 \(\left\{\begin{array}{c} F(1)=m^2-m>0 \\ F\left(\dfrac{1}{m}\right)=-\ln \dfrac{1}{m}<0 \\ \dfrac{1}{m}>1 \end{array}\right.\)此时无解; 若\(m<0\),则当 \(x \in\left(0,-\dfrac{1}{2 m}\right)\)时,\(F'(x)<0\), 当 \(x \in\left(-\dfrac{1}{2 m},+\infty\right)\)时,\(F'(x)>0\), 要满足已知条件,必有\(\left\{\begin{array}{c} F(1)=m^2-m>0, \\ F\left(-\dfrac{1}{2 m}\right)=\dfrac{3}{4}+\ln (-2 m)<0 \\ -\dfrac{1}{2 m}>1 \end{array}\right.\),解得\(-\dfrac{1}{2 e^{\dfrac{3}{4}}} 当\(-\dfrac{1}{2 e^{\dfrac{3}{4}}} 故函数\(F(x)\)在\(\left(1,-\dfrac{1}{2 m}\right)\)上有一个零点. 易知 \(\dfrac{1}{m^2}>-\dfrac{1}{2 m}\),且 \(F\left(\dfrac{1}{m^2}\right)=\dfrac{1}{m^2}-\dfrac{1}{m}-\ln \dfrac{1}{m^2}>\dfrac{1}{m^2}-\ln \dfrac{1}{m^2}\) , 下证:\(x-\ln x>0\). 令\(g(x)=x-\ln x\),则\(g'(x)=1-\dfrac{1}{x}\),当\(0 当\(x>1\)时,\(g'(x)>0\), 故\(g(x)≥g(1)=1-\ln 1>0\),即\(x-\ln x>0\), 故\(F\left(\dfrac{1}{m^2}\right)>\dfrac{1}{m^2}-\ln \dfrac{1}{m^2}>0\), 故\(F\left(-\dfrac{1}{2 m}\right) \cdot F\left(\dfrac{1}{m^2}\right)<0\), 又\(F(x)\)在 \(\left(-\dfrac{1}{2 m},+\infty\right)\)上单调递增, 故\(F(x)\)在 \(\left(-\dfrac{1}{2 m},+\infty\right)\)上有一个零点. 综上所述,实数\(m\)的取值范围为 \(\left(-\dfrac{1}{2 e^{\frac{3}{4}}}, 0\right)\). 答案 \(1\) 解析 \(\because g(0)=0\),由题意知\(0\)为\(g(x)=f(x)-2\)的唯一零点, 因为\(g'(x)=a^x \ln a+b^x \ln b\),且\(01\), 故\(\ln a<0\),\(\ln b>0\), 所以\(g'(x)=0\)有唯一解 \(x_0=\log _{\frac{b}{a}}\left(-\dfrac{\ln a}{\ln b}\right)\), 令\(h(x)=g'(x)\),则\(h'(x)=(a^x \ln a+b^x \ln b)'=a^x (\ln a)^2+b^x (\ln b)^2\), 对于任意\(x\in R\),都有\(h'(x)>0\), 故\(g'(x)=h(x)\)在\(R\)上单调递增, 则\(x\in (-∞,x_0 )\)时,\(g'(x)<0\),\(x\in (x_0,+∞)\)时,\(g'(x)>0\), 故函数\(g(x)\)在\((-∞,x_0 )\)时单调递减,在\((x_0,+∞\))时单调递增, 故\(g(x)_{min}=g(x_0 )\); 若\(g(x_0 )<0\),当\(x<\log _a2\)时, \(a^x>a^{\log _a2}=2\),\(b^x>0\), 则\(g(x)>0\),因此当\(x_1<\log _a2\)且\(x_1 此时\(g(x)\)在\((x_1,x_0 )\)内有零点,则\(g(x)\)至少有两个零点,与题意不符; 故\(g(x_0)≥0\),则\(g(x)\)的最小值为\(g(x_0)=0\), 因为由题意知\(0\)为\(g(x)\)的唯一零点,故\(x_0=0\), 即\(x_0=\log_ \frac{b}{a}\left(-\dfrac{\ln a}{\ln b}\right)=0\), \(-\dfrac{\ln a}{\ln b}=1\), 则\(\ln a+\ln b=0\),\(\ln ab=0\),\(ab=1\), 即\(ab\)值为\(1\). 答案 (1)\([e,+∞)\);(2)\((0,e)\) . 解析 (1)\([e,+∞)\)(过程略); (2)由题意得\(ae^x-x-2-\ln (x+2)+x+\ln a=0\)在\(x>-2\)上有两个根, 即 \(e^{x+\ln a}+x+\ln a=\ln (x+2)+x+2=e^{\ln (x+2)}+\ln (x+2)\),(同构) 令\(h(x)=x+e^x\),则\(h(x)\)单调递增,而\(h(x+\ln a)=h(\ln (x+2))\) 所以\(x+\ln a=\ln (x+2)\),问题转化为\(\ln a=\ln (x+2)-x\)在\(x>-2\)时有\(2\)实根, 令\(t(x)=\ln (x+2)-x\),则 \(t^{\prime}(x)=-\dfrac{x+1}{x+2}\), 当\(-2 当\(x<-2\)或\(x>-1\)时,\(t'(x)<0\),\(t(x)\)单调递减, 所以\(t(x)⩽t(-1)=1\),且在\((-2,-1)\),\((-1,+∞)\)上的值域都为\((-∞,-1]\), 综上\(\ln a<1\),所以\(0
故\(a\)的取值范围为\((0,e)\). 【B组---提高题】 1.己知函数\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\). (1)当\(a≥0\)时,求\(f(x)\)的单调区间和极值; (2)讨论\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\)的零点的个数. 2.已知函数\(f(x)=(x-2)e^x+a(x-1)^2\)有两个零点,求\(a\)的取值范围. 参考答案 答案 (1)单调递减区间为\((-∞,0)\),单调递增区间为\((0,+∞)\);极小值为\(0\),无极大值; (2) 当\(a≥0\)或\(a=-1\)时,\(f(x)\)有\(1\)个零点; 当\(a<0\)且\(a≠-1\)时,\(f(x)\)有\(2\)个零点. 解析 (1)\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\)的定义域为\((-∞,+∞)\),\(f'(x)=e^x-1+ax\), \(\because a≥0\),\(\therefore f'' (x)=e^x+a>0\), 则\(f'(x)=e^x-1+ax\)在\((-∞,+∞)\)上单调递增, 又\(f'(0)=0\), 所以当\(x\in (-∞,0)\)时,\(f'(x)<0\),当\(x\in (0,+∞)\)时,\(f'(x)>0\), 即\(f(x)\)的单调递减区间为\((-∞,0)\),单调递增区间为\((0,+∞)\); \(f(x)\)的极小值为\(f(0)=0\),\(f(x)\)无极大值; (2)当\(a≥0\)时,由(1)知\(f(x)≥f(0)=0\), 故\(f(x)\)仅有一个零点\(x=0\); 当\(a<0\)时,\(f'' (x)=e^x+a\), 令\(f'' (x)=0⇒x=\ln (-a)\); 令\(f'' (x)>0⇒x>\ln (-a)\), 所以\(f'(x)\)在\(x\in (\ln (-a),+∞)\)上单调递增; 令\(f'' (x)<0⇒x<\ln (-a)\), 所以\(f'(x)\)在\(x\in (-∞,\ln (-a))\)上单调递减,且\(f'(0)=0\),\(f(0)=0\), 所以\(f'(x)≥f'(\ln (-a))\), 最小值\(f'(\ln (-a))\)与\(0\)的比较等价于\(\ln (-a)\)与\(0\)的大小比较, 所以分三类进行讨论: ①当\(-1
由\(f'(x)\)在\(x\in (-∞,\ln (-a))\)上单调递减及在\(x\in (\ln (-a),+∞)\)上单调递增, 且\(f'(0)=0\),\(x→-∞⇒f'(x)→+∞\) 由零点存在定理,得\(f'(x)\)在\(x\in (-∞,\ln (-a))\)上存在唯一零点,设为\(x_0\),所以 $x$ $(-∞,x_0 )$ $x_0$ $(x_0,0)$ $0$ $(0,+∞)$ $f'(x)$ $+$ $0$ $-$ $0$ $+$ $f(x)$ 递增 极大值 递减 极小值 $f(0)=0$ 递增 又\(f(0)=0\)及\(x→-∞⇒f(x)→-∞\)由零点存在定理, 得\(f(x)\)在\(x\in (-∞,0)\)上存在唯一零点,设为\(x_1\), 综上,当\(-1
②当\(a=-1\)时,即\(\ln (-a)=0\)时, 由\(f'(x)\)在\(x\in (-∞,0)\)上单调递减及在\(x\in (0,+∞)\)上单调递增,且\(f'(x)≥f'(0)=0\), 得\(f(x)\)在\((-∞,+∞)\)上单调递增, 故\(f(x)\)在\((-∞,+∞)\)上只有一个零点\(x=0\); ③当\(a<-1\)时, 同理可得\(f(x)\)在\((-∞,+∞)\)上存在\(2\)个零点:一个为\(x=0\),一个为\(x_2\in (0,+∞)\), 综上可得,当\(a≥0\)或\(a=-1\)时,\(f(x)\)有\(1\)个零点; 当\(a<0\)且\(a≠-1\)时,\(f(x)\)有\(2\)个零点. 答案 \((0,+∞)\) 解析 法一 分类讨论 \(\because\)函数\(f(x)=(x-2)e^x+a(x-1)^2\), \(\therefore f'(x)=(x-1)e^x+2a(x-1)=(x-1)(e^x+2a)\), ①若\(a=0\),那么\(f(x)=0⇔(x-2)e^x=0⇔x=2\), 函数\(f(x)\)只有唯一的零点\(2\),不合题意; ②若\(a>0\),那么\(e^x+2a>0\)恒成立, 当\(x<1\)时,\(f'(x)<0\),此时函数为减函数; 当\(x>1\)时,\(f'(x)>0\),此时函数为增函数; 此时当\(x=1\)时,函数\(f(x)\)取极小值\(-e\), 由\(f(2)=a>0\),可得:函数\(f(x)\)在\(x>1\)存在一个零点;